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Variable Strategy Model of the Human Operator

John Michael Phillips

(ABSTRACT)

Human operators often employ discontinuous or “bang-bang” control strategies when per-
forming large-amplitude acquisition tasks. The current study applies Variable Structure
Control (VSC) techniques to model human operator behavior during acquisition tasks. The
result is a coupled, multi-input model replicating the discontinuous control strategy. In the
VSC formulation, a switching surface is the mathematical representation of the operator’s
control strategy. The performance of the Variable Strategy Model (VSM) is evaluated by
considering several examples, including the longitudinal control of an aircraft during the vi-
sual landing task. The aircraft landing task becomes an acquisition maneuver whenever large
initial offsets occur. Several different strategies are explored in the VSM formulation for the
aircraft landing task. First, a switching surface is constructed from literal interpretations of
pilot training literature. This approach yields a mathematical representation of how a pilot
is trained to fly a generic aircraft. This switching surface is shown to bound the trajectory
response of a group of pilots performing an offset landing task in an aircraft simulator study.
Next, front-side and back-side landing strategies are compared. A back-side landing strategy
is found to be capable of landing an aircraft flying on either the front side or back side of the
power curve. However, the front-side landing strategy is found to be insufficient for landing
an aircraft flying on the back side. Finally, a more refined landing strategy is developed that
takes into the account the specific aircraft’s dynamic characteristics. The refined strategy is

translated back into terminology similar to the existing pilot training literature.
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Chapter 1

Introduction

The motivation behind mathematically modeling the human operator is to help explain the
response characteristics of the dynamic system including the manual controller. In the case
of manual control of a vehicle, this modeling yields the “closed-loop” or “operator-vehicle”
dynamics. A quantitative explanation of this closed-loop behavior is necessary to summarize
operator behavioral data, to understand operator control actions, and to predict the operator-
vehicle dynamic characteristics. For these reasons, control engineering methodologies are
applied to modeling human operators. These “control theoretic” models primarily attempt
to represent the operator’s control behavior, not the physiological and psychological structure
of the operator. As McRuer states, these models “gain in acceptability” if they can identify

features of these structures, “although they cannot be rejected” for failing to do so. [1]

One broad division of human operator models is whether they simulated a continuous or
discontinuous operator control strategy. Significant success has been achieved in modeling
human operators performing compensatory and pursuit tracking tasks by employing contin-
uous, quasi-linear operator models. Examples of these include the crossover model and the

Optimal Control Model. [2, 3]

Discontinuous input behavior is often observed during manual control of large amplitude
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and acquisition tasks. [2, 4, 5, 6] These discontinuous human operator responses are usually
associated with precognitive human control behavior. [2, 7] Discontinuous control strategies
have been previously described by “bang-bang” or relay control techniques. Young and
Meiry highlighted operator’s preference for this type of relay control strategy in a study that
compared controlling high-order system plants with a proportional verses a relay control
stick. By allowing the operator to generate a sharper step input, the relay control stick
improved the operators’ performance by up to 50 percent. Young and Meiry hypothesized
that when a human controls a high-order plant, the operator must consider the error of
the system to be dependent upon the integral of the control input. Pulse and step inputs
would reduce the integration requirements on the operator and should make the system error

response more predictable to the operator. (8]

Although operator’s may employ a bang-bang control strategy, they often impose an internal
limit on the magnitude of control inputs. This internal limit is typically less than the full
control authority available. [2] Pew hypothesized that this behavior is due to the operator’s
recognition of their own reaction time delay. The operator must tradeoff the cost of a
switching time error with the cost of limiting the velocity of the output to a value less than

the maximum. [9]

A significant amount of research during the 1960’s and 1970’s examined discontinuous input
behavior by human operators and developed models to emulate it. [7, 10, 11, 12, 13, 14,
15, 16, 17] Good summaries of these efforts can be found in Costello [18], Sheridan [4],
and McRuer. [2] All of these efforts employed some type of relay element to model the
discontinuous input behavior. During the 1980’s and 1990’s, Andrisani [19], Heffley [20], Hess
[21], Innocenti [5, 6], and Moorehouse [22] developed pilot models that included switching

or discrete changes in pilot behavior.

To summarize these past research efforts, existing human operator models can be divided
into four domains based on the operator control strategy and the complexity of the dynamic

system. This division is summarized in Table 1.1. Several different models successfully
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Table 1.1: Existing Human Operator Models.

System Complexity = Continuous Strategy = Discontinuous Strategy

Single Input Crossover Model Multiple Models
Multi-Input Optimal Control Model = No Existing Models

replicated discontinuous operator control behavior for single input dynamic systems. {2, 5,
6, 7, 11, 12, 13, 15, 16, 17, 19] However, no models have been developed for multi-input
dynamic systems. The proposed Variable Strategy Model for the human operator attempts
to fill this void.

The ability of the Variable Strategy Model to model a multi-input, discontinuous control
strategy is a benefit of the application of variable structure control (VSC) techniques. Vari-
able structure controllers easily blend discontinuous and linear control strategies for multi-
input dynamic systems. A review of VSC techniques is provided in Chapter 2. The appli-
cation VSC techniques to a human operator model is explored by the development of the
Variable Strategy Model (VSM) in Chapter 3. To apply the multi-input VSM, Chapter
4 examines the longitudinal control of an aircraft during the visual landing task. Due to
the possibility of a large initial error in distance to the runway, the visual landing task is
an acquisition task. The response of the VSM for the landing task is compared to a flight
simulator study of pilots response to vertical navigation error. The VSM trajectory response

is shown to bound the piloted simulator data set.

In the VSM, the switching surface formulation allows for easy mathematical representation of
various piloting strategies. Chapters 5 compares front-side and back-side landing strategies
constructed from a literal interpretation of pilot training literature. Although representative
of the data set, neither of these generic strategies are representative of the coupled strategy
implemented by an experienced pilot. A more refined acquisition strategy is developed in

Chapter 6 by analyzing the dynamics of an idealized point mass representation of an aircraft.
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The dynamics of this idealized system are produced by the control technique of eigenstructure
assignment. This technique allows for inclusion of parameters representative of the dynamics
of the aircraft being controlled. As a result, a switching surface is developed that is specific
to the aircraft flown and allows for interpretation of a landing strategy to achieve the desired

dynamics in terms similar to the pilot training literature.




Chapter 2

Variable Structure Control Theory

Variable structure control evolved from the 1960’s work of the Russian researchers Emel’yanov
and Barbashin. [23] The first introduction of this work in the West was a survey paper by
Utkin published in 1977. [24] A good tutorial for this control technique can be found in an
article by DeCarlo. [25] Whereas a linear control law uses constant parameters to implement
a control law (i.e. u = kz), a variable structure controller allows the structure of the contfol
law (such as k above) to switch at any instant from one to another member in a finite set of
continuous control laws. [24] This switching behavior results in a discontinuous control time

history.

2.1 Sliding Mode Control

A subset of variable structure control techniques is called “sliding mode” control. This
control strategy attempts to drive the system state variables to, and maintain them on, a

hyperplane in the state space. Consider the linear time invariant system given by

i = Az + Bu (2.1)
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where A € R™", z(t) € R*, B € R**™ and u(t) € R™. The plant matrix A can be thought
of as a linear mapping of ™ onto R”, (or A € L(R",R")). Similarly, the input matrix B
can be thought of as a linear mapping of ™ onto R”, (or B € L(R™, R")).

For a state regulation task, define a switching surface through the origin of the form
o(z)=0 (2.2)

where 0 € R™. For simplicity, the switching surface is usually chosen to be a time-invariant,

linear function of the state vector
’ o(z) = Sz (2.3)

with § € R™*™ representing a matrix of constants resulting in a hyperplane passing through
the origin in the state space. When the system response is restricted to the switching surface

defined by equation (2.3), this condition can be expressed as
6 =0=SAz + SBu (2.4)

Restricting the system response to the switching surface is referred to as “sliding mode.”
Since S is a design choice, one requirement is that it should be chosen such that the inverse
of SB exists. Solving equation (2.4) for the linear control needed to maintain the system

response on the switching surface (o is constant) gives the “equivalent control” (ue,).
Upy = — (SB) ™' SAz (2.5)

Substituting this control law into the system equation (2.1) gives the closed-loop system

dynamics when the system states are constrained to be on the switching surface,
&= I, - B(SB)™'S| Az (2.6)
The eigenvalues (\; € C') and eigenvectors (v; € C") of this system are defined by
[\, — (I — B(SB)™'S) A] v =0 (2.7)

where ¢ = 1,2, - -, n. This constrained dynamic system, equation (2.6), has m zero eigenval-

ues resulting from the constraint equations (2.3). The other (n — m) eigenvalues represent
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the dynamics of the constrained system. [23] They are insured to be stable by the appro-
priate choice of S. The constrained dynamic system defined by these (n — m) dynamic
modes is referred to in variable structure control literature as the “reduced-order system.”
The reduced-order system or null space dynamics of S can be designed with any desired

properties, such as system stabilization, tracking, or regulation.

If the linear system defined by equations (2.1) and (2.3) is a minimal (or least order) system,
then the transmission zeros, defined by the matrix triple (S, A, B), are not elements of the
spectrum of the plant matrix. [26] And the eigenvalues of the reduced-order system are
equivalent to the transmission zeros [27] of the unconstrained dynamic system. Therefore,

the eigenvalues of the reduced-order system ();) are defined as the roots of
det [S (AT, — A) ™' B] =0 (2.8)
where 7 =1,2,---,n—m.

Because the system is minimal, the reduced-order system eigenvalues (i.e. the open-loop
transmission zeros) are not elements of the spectrum of the plant matrix A and (A\; I, — A7t
exists. [26] Appendix A provides further details regarding the equivalence of transmission

zeros and the reduced-order system eigenvalues.

If the system is not minimal order, but employs the same system matrix, the additional
eigenvalues of the reduced-order system are the decoupling zeros of the system. [26] The
decoupling zeros are elements of the spectrum of A and are responsible for pole/zero cancel-

lations in the system dynamics. [26]

El-Ghezawi showed how the zero input directions are related to the reduced-order system

eigenvectors. [28] The zero input direction vectors (¢;,j = 1,2, +,n — m) are defined by
S (21, — A)™' Bay =0 (2.9)
This definition can be reformulated as

[I, - B(SB)™ 8] A(Nay) = 2 (Ney) (2.10)
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where N is a matrix whose columns are a set of basis vectors for ker (S). As already
noted, the transmission zeros (z;) are equivalent to the reduced-order system eigenvalues
(A;). Comparison of equation (2.10) with equation (2.7) also reveals that the reduced-order

system eigenvectors (v;) are related to the zero input directions (c;) by
v = N Q; (211)
Since N is a matrix whose columns are a set of basis vectors for ker (5),

v; € ker(S) (2.12)

The design of a sliding mode control system can be broken into two parts: design of the

switching surface and design of the control law.

2.1.1 Switching Surface

The switching surface plays the major role in defining the reduced-order system dynamics.
Many techniques have been devised for designing the switching surface. These techniques in-
clude: Filoppov’s method, Utkin’s equivalent control method, pole placement, eigenstructure

assignment, and quadratic minimization methods. [25, 29, 30]

One classical means of designing control systems is by pole placement. Not surprisingly,
this method is often used to design the switching surface for sliding mode control systems.
Examples can be found in Edwards and Utkin. [23, 29] Pole placement of the reduced-order
system eigenvalues is accomplished using the so-called “regular form.” Consider the linear
time invariant system given in equation (2.1). It is desired to transform this system into the

variable structure regular form,

T A; A T 0
U 11 12 1 + u ( 21 3)
Ty Ay A ) B,

where z; € R*™™, 2, € R™, and u € R™. In general, the aircraft system equations examined
g

in this dissertation are already in this form. For more general applications, Edwards outlines




John Michael Phillips Chapter 2. Variable Structure Control Theory 9

a transformation method to generate this regular form. [23] On the sliding surface, this

dynamic system is constrained by equation (2.3). This constraint can be expressed as
0= S11L'1 + 82.772 (214)

where S; € R™*("-m) and S, € R™*™. Since S, is full rank for (SB)™! to exist, solving for
o gives

Io = '—82_1511'1 . (215)

If a matrix M € R™*(=m) ig defined as

then substituting this definition into equations (2.15) and (2.13) gives the reduced-order

dynamic system

i'l = (All — A12M) I (217)

This form of the reduced-order system dynamics is very similar to the form that results when

the state feedback control is applied to a general linear time invarinat state-space model.
z=(A-BK)z (2.18)

where K € R™%" is the state feedback gain matrix. Comparing (2.17) to (2.18), A;; could
be considered the plant matrix A; A;, the input matrix B; and M the gain matrix K.
Traditional pole placement algorithms can therefore be used to achieve the desired dynamics
for (2.17). For a scalar control (u € R'), sufficient information is given to specify all n — 1

reduced-order system eigenvalues.

For a multi-input system, additional degrees of freedom exist, namely (n — m)m degrees of
freedom. This situation allows for specification of all n — m eigenvalues and portions of the
eigenvector structure. [23] The technique applied to multi-input systems is referred to as
multi-input pole placement or eigenstructure assignment. [30, 31, 32] Wonham and Morse
developed a geometric, vector-space approach to this problem in the 1970’s. [33, 34, 35, 36]

This method consists of determining a state feedback gain matrix and cross-control gain
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matrix. The gain matrices are determined from an analysis of the system’s invariant and
controllablity subspaces. The gain matrices are usually chosen to decouple the system’s
output response and place the poles at desired locations. Although the geometric decoupling
method can be used to create desired mode shapes, instead of decoupling the modes, the
eigenstructure method is a more straight forward presentation of this concept. The following
description of the eigenstructure technique closely parallels the notation provided by Brogan

adapted for the reduced-order system. [31]

The eigenvalues (\j, j = 1,2,---,n — m) and associated eigenvectors (w; € C™~™) of the

null space or reduced-order dynamics given by equation (2.17) are defined by
(A]I(n_m) - A11 + A12M) w; = 0 (219)

This expression can be rearranged into a partitioned matrix of the form

Wj
[ (M ln-my — A11) A ] =0 (2.20)
ij
SO
Wi
M:)j € ker ([ ()\jI(n—m) - An) Arz D (2.21)

Let N; be a matrix whose columns are a set of basis vectors for the null space of
[()\jl(n_m) - Au) Alg]. Since A; is not in the spectrum of A, it is not in the spectrum of
Aj;. [23] So the dimension of Nj is (n — m) x m. Let §; € C™ be partitioned in accordance
with (2.13),
&
& = (2.22)
& ).
j
where & € C"™™ and & € C™. The vector (&;); is the best representation of the null space
eigenvector w; in the m dimensional subspace N;. The “best representation” terminology

is used since there are insufficient degrees of freedom in the problem to specify all (n — m)

components of all (n — m) eigenvectors w;. As a result, some judgement must be used in
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selecting the desirable structure of the vector v;. The selection usually consists of attempting

to place 1’s and 0’s in certain components of w; to decouple mode responses.

After all n — m vectors &; are found, define a matrix ¥ € C**(®=™) of the form

U = [ & - bnem ] (2.23)

U, & &
= 2.24
9 T 3 I

where ¥, € C(r~m)x(r—m) 314 ¥, € C™*("~m)  Since each column of ¥ is in the null space

of [()\jI(n_m) - A11) A12], it must satisfy equation (2.20). So,
I, A
v, MY,

M = 0,0 (2.26)

that can be partitioned as

U =

(2.25)

then

Given the definition of M in equation (2.16) and letting Sy = I, the switching surface to

achieve the desired null space dynamics is

S = [ T,070 I, ] (2.27)

2.1.2 Control Law

A discontinuous control input is used to drive the state variables to the switching surface
(called the “reaching phase”) and maintain them there if they are perturbed off the surface.
Since the system state variables are not on the switching surface (o # 0), attempting to
drive them onto the switching surface can be expressed as a “reachability condition.” The

general multivariable form of this condition is

oT5 <0 (2.28)
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where o € R™. Sometimes a more restrictive reachability condition is imposed that requires

each reaching dynamic mode to individually satisfy this condition
0i6; <0 for 1=1,2,---,m (2.29)

There are many possible choices for the control elements needed to achieve this goal. [25, 37]

A simple form is a unit vector non-linearity

-1 9

u = —p(SB) (2.30)
llell
where p is a positive scalar and || - || is the Euclidean norm. A slight modification of this
control law includes a matrix P such that
Po
u=—p(SB)"'—— (2.31)
[|Poll
where P € R™*™ is a solution to the Lyapunov equation
P®+0"P =1, (2.32)

and ® € R™*™ is a stable design matrix intended to specify the dynamics of the switching
variables in the following form,

& =do (2.33)

Another simple choice is a multi-variable constant gain relay. [25] If a vector signum function
“sign” is defined as

sign(o) = | sign(0y) sign(oy) --- sign(om) i (2.34)

and the symmetric control limits for each relay are defined as a diagonal matrix Up,q,
Umaz = dlag {'Ufmam y Umazaey ° * umazm] (235)
then the relay control law can be expressed as

u = —Upqg sign (o) (2.36)
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In the scalar control case (m = 1), all of these control laws reduce to a simple relay.

In general, the relay element can be allowed to chatter during the “sliding phase” (o = 0)
to approximate the equivalent control given by equation (2.5). However, often the non-
linear relay is combined with a linear control law. The most common form is to include the

equivalent control as a linear portion of the control law, such as

llell

The advantage of this form is that if the controls are not saturated, the control law in

u=—(SB)™ [SAx + p-i’—] (2.37)

equation (2.37) satisfies the reachability condition (2.28) globally, since
ol =—pllol| <0 (2.38)

Consequently, the state trajectories are always driven to and captured by the switching

surface.

Unlike linear control techniques, the relay element of sliding mode control laws in equations
(2.30) and (2.37) allow more control power to be used in maintaining the desired state
trajectory while moving towards the switching surface. As a result, once the sliding mode is
achieved, the system behavior is independent of matched external disturbances and internal
uncertainties. This characteristic is referred to as the invariance property of sliding mode

control. [38]

Whereas most sliding mode control techniques concentrate on designing the reduced-order
dynamics, Gao proposed a method that also considers requirements on the reaching mode
dynamics. [37] In this method, the designer specifies the type of desired reaching mode
characteristics and solves for the required control law. For example, if it is desired that the

system maintain a constant reaching rate,
6 = SAz + SBu = —Gssign (o) (2.39)
where sign (o) is the vector sign function defined in equation (2.34) and

G = diag[g1, 92, *, Gm) (2.40)
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Then the desired control law becomes
u = —(SB)™' [SAz + G sign(o)] (2.41)
If the desired reaching dynamics are a constant plus proportional rate,
¢ = —Gsign(o) — Ho (2.42)
where H is an m by m matrix of constants. In this case, the desired control law is
u= —(SB)™' [SAz + Gsign(c) + Ho] (2.43)

In general, since the inverse of the matrix (SB) exists by the design requirement of the
switching surface S, any form of desired reaching dynamics can be used to define the sliding

mode control law.

2.1.3 Example

A simple, second-order example highlights some of the VSC design aspects. Consider the

linear-time invariant system

} 0 25 0
. Sl I I (2.44)
.’i?z 0 0 o 1
and the switching surface
x
0= [ 81 82 ] [ 1 } (2.45)
T2

The reduced-order system dynamics, given by (2.17), are

& = —2521, (2.46)
52
Using the pole placement design method for the switching surface, a selection of A = —1
results in the relationship
~1=-252 (2.47)

52
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Figure 2.1: Second Order System Sliding Mode Example

giving the switching surface

Sz[ L 1] (2.48)

25
Figure 2.1 illustrates the state trajectories for the dynamic system in equation (2.48) using
a control law of the from

u = —1sign (Sz) (2.49)

The straight red line in the Figure 2.1 is the switching surface (2.48) and the curved blue

lines are the state trajectories.

The control law in (2.49) generates a locally stable sliding mode. This stable region is
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determined from examining the reachability condition (2.28). For this example
06 = o[z, — 1sign(o)] < 0 (2.50)

Dividing by the positive scalar o sign (o) gives

R ~1<0 (2.51)
. 1
sign (-23331 + xg)
Examine a point (214, Z3,) on o = 0; so,
T1o = —25Z9, (2.52)

and consider a slight perturbation in the direction (6z;) from this point

1 = Iy, + 0z
' o (2.53)
T2 = T2
So (2.51) becomes
Z20
_ 1 2.54
sign (8z;) <0 (2:54)
Equation (2.54) implies that the sliding mode is bounded by
Ty = 1 and 6z, <0
2 ' (2.55)
Ty = —1 and 6z, >0
or on the sliding surface (¢ = 0) within the bounds
-1 < 3, < 1
2 (2.56)

r = —25$2

The limits of the stable portion of the sliding mode are denoted in Figure 2.1 by the red
x’s surrounded by circles. Inside of this region the sliding mode is stable on the switching
surface. Outside of this region, there is insufficient control power to maintain a sliding mode;

so, state trajectories are not captured but overshoot the switching surface.
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2.2 Comparison of VSC to other Control Techniques

Variable structure control and sliding mode control have similarities with many more familiar
control techniques. Buffington has illustrated the similarities between sliding mode control
and feedback linearization. [39] In addition, sliding mode control is similar to many high-
gain, output control techniques with bounded control inputs. The two primary reasons
for this connection are: the structure of the sliding mode dynamics is determined by the
transmission zeros and zero directions of the open-loop system just like a high-gain controller;
and the relay-like, non-linear behavior of the sliding mode control law is similar to the control

saturation non-linearity encountered with high gain controllers.

The next section highlights the similarities between sliding mode control and three more
familiar control techniques: bang-bang control, Lyapunov control, and the asymptotic linear
quadratic regulator. The shape of the control saturation for a multi-input control problem
significantly affects the control law response. As a result, the following section only considers
a maximum allowable control input of one. The control laws are then typical of the unit

vector form of

o
u=—i (2.57)
llerl
where || - || is the Euclidean norm and o is a switching surface.

2.2.1 Bang-Bang Control

Due to its relay-like usage of the control, it would appear that VSC should have many sim-
ilarities with “bang-bang” control. In fact, if a time-varying switching surface is employed,
the control techniques are very similar. The following development is based on material pre-
sented by Lewis. [40] Let the dynamic system under consideration be a linear-time invariant
system of the form

% = Az + Bu (2.58)
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where z € R*, u € R™, A € R"*", and B € R"*™. The control is bounded in the form of
lull <1 (2.59)

where || - || is the Euclidean norm.

Consider the minimum time control strategy. The cost function to minimize the transient
time is
tf
J= / 1dt (2.60)
0

This optimal control problem is solved by minimizing the Hamiltonian
H =1+ )T (Az + Bu) (2.61)

where A € R™ are the co-state variables. Since the dynamics are linear in the control vector,
the stationarity condition gives
dH

0=——= BT () (2.62)

but is not explicitly solvable for the control, u. Therefore, to minimize H, u would be selected
to make H as negative as possible (usually u = 400 or —o00). However, since the controls
are bounded, Pontryagin’s Minimum Principle is applied to make H as negative as possible

within the control bounds
H (z*,u*, \*,t) < H (z*,u, X", t) (2.63)
where ||u|| < 1. This consideration gives an optimal control of
_BTA(t)

= BTG (264)

where the co-state variables are determined by the dynamic system
Mt) = —ATA(®2) (2.65)
Evaluating the Hamiltonian for the terminal conditions gives

0 =1+ MT(t;) [Az(t;) + Bu(t)] (2.66)
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In variable structure control terms, the switching surface o could be thought of as a time

varying function of the co-state variables
o(t) = BTA(t) (2.67)

So the bang-bang control is

u* = — (2.68)

Example

As a comparison to sliding mode structure controller, consider the same second-order system

used in the previous VSC design example in section 2.1.3.

T _ 0 25 x 4 0 " (2.69)
T 0 0 Zy 1
For a second-order system with a scalar control, the known minimum time control strategy
employs one switch (or two bangs). As a result, the time varying switching surface given in
equation (2.64) is a composite of the positive and negative control input state trajectories
that go to the origin. For both of these trajectories, the state values at the final time (tf)

are zero.

z1(tg) = z2(tf) =0 (2.70)
Consider the u = +1 (or zo < 0) trajectory to the origin. From the state space model (2.69)
2y =+1 (2.71)
Integrating back from the final time (¢7) to any other time (t) gives
my=t—t; (2.72)
Next integrating the other state space equation in (2.69) back in time from ¢ to ¢ gives
25

25
I = —2- (t — tf)2 = ?.'122 (273)
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So the zo < 0 branch of the switching surface is

o(x) =z, — 22} for z,<0 (2.74)
Repeating the same analysis for the u = —1 (or z, > 0) trajectory to the origin gives
o(x) =21+ 222 for z,>0 (2.75)

Equations (2.74) and (2.74) can be combined into a single equation defining the non-linear,

bang-bang switching surface of the form
25
o(z) =z + ’§‘$2|$2| (2.76)

The control law would be of the form

u = —signfo(z)] = —

(2.77)

Figure 2.2 illustrates the state trajectories for this bang-bang control in the state space. The
red line in the Figure 2.2 is the non-linear, switching surface and the blue lines are the state

trajectories.

The sliding mode example derived earlier could be thought of as a linear approximation
to the time optimal bang-bang solution, see Figure 2.1. In fact, for the two sets of initial
conditions whose state trajectories go through the intersection of the linear and parabolic
switching surfaces but are beyond the range of a stable sliding mode, the solutions are the

same.

2.2.2 Lyapunov Control

Brogan gives an example of a control-constrained quadratic Lyapunov controller that il-
lustrates the similarities between this type of controller and a unit-vector, sliding mode
controller. [31] Consider the LTI state space dynamic system defined in equation (2.58). Let

the control vector be constrained to a unit-magnitude,

lu@®f <1 (2.78)
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Figure 2.2: Second Order System Bang-Bang Example
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where || - || is the Euclidean norm. Define the Lyapunov function
V(z) =z Pz (2.79)

with P € R™*" symmetric and positive definite. Then

V(z) = TPz +2TPi
(2.80)
= g7 (ATP + PA) z+ 2uT' BT Px
The desired result of
V(z) <0 (2.81)
can be achieved if P is defined in terms of the Lyapunov equation
ATP+ PA=-Q (2.82)

where @ is a positive definite matrix, and if u is parallel but opposite in sign to BT Pz.
In addition, for a minimum time solution given the control constraint in equation (2.78), u
should be always be maximum in magnitude. This consideration gives a control law of the

form
BTpPzx
|| BT Px||

This expression is the same as a unit vector, variable structure control law of the form

U =

(2.83)

Sz
w=—— (2.84)
[|S]|
where the switching surface is defined by
S=BTP (2.85)

So the choice of the Lyapunov function (P) could be considered a design method for deter-
mining the sliding mode switching surface (S). This design method would ensure a stable

set of sliding or reduced-order system dynamics.
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2.2.3 Asymptotic LQR

In the late 1970’s, Stein and others examined the asymptotic properties of the linear quadratic
regulator (LQR) to gain insights in the proper selection of weighting matrices. [41, 42, 43, 44]
Consider the LTI state space dynamic system defined in equation (2.58) and the LQR cost

function

J= /000 z7Qz + puT Rudt (2.86)

where Q € R**", p € R!, and R € R™*™, consider a matrix C to be the full rank factorization

of the symmetric state weighting matrix @)
Q=C"C (2.87)

where C' € RP*™ and p = rank(Q) < n. If C is considered as the output matrix of the system
in equation (2.58)
y=Cx (2.88)

where y € P, then the LQR cost function in equation (2.86) can be formulated as an output

cost function of the form
o0
J= / yTy + puT Ru dt (2.89)
0
The optimal solution for this formulation is

1
u*=—--R'B"Px (2.90)
p
where P is the solution to the matrix Riccati equation

0=PA+ATP4+CTC - %PBR‘lBTP (2.91)

Examining the control law in equation (2.90), as p — 0, the magnitude of any vector u* €
Ran(BT P) is very large. In the case of a physical system, the control law in equation (2.90)
would define a direction in the control space (R™*™) and the magnitude of the control vector
would be limited by the physical bounds on the control. The control law in equation (2.90)

would also exhibit discontinuous inputs based on ker (BTP). If the control were limited in
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magnitude to one, then an equivalent variable structure control law would be a unit vector

non-linearity of the form

R 'BTpPyx
_ . 2.92
4= TIR-BT P (2:92)
or considering BT P as the switching surface S
RSz
= 2.93
"= RS (299

The control weight matrix R affects the direction of the control vector by assigning different
relative costs to the various controls. For R = I,,,, the controls are equally weighted, equation

(2.93) is similar to the Lyapunov control example in equation (2.83).

Kawkernaak [44, 45] shows that for square, minimum phase plants, the solution the Riccati

equation (2.91) in the limit as p — 0 approaches the zero matrix

lim P = [0] (2.94)

p—0

and that the matrix Riccati equation (2.91) can be reposed as
1
0 =lim |CTC - ~PBR™'B™P (2.95)
p—0 P
Defining the optimal control gain matrix K* as

K*=1p-1pTp (2.96)
p

equation (2.95) can be rearranged to show

limg (K*)" pRK* = CTC (2.97)

Equation (2.97) reveals that the state feedback gain matrix K approaches R~/2C as the
control weighing approaches zero. Therefore, the output matrix C of the asymptotic LQR
control law can be thought of as a switching surface S in a VSC law. A unit vector VSC

law equivalent to the asymptotic LQR control law in equation (2.90) is

R 12Cx
T |[R2C]|

u= (2.98)




Chapter 3

Variable Strategy Pilot Model

A simple definition of strategy is “a plan of action.” [46] In control applications, the most
straight forward example of a plan of action is the if-antecedent-then-consequent rules fre-
quently found in fuzzy logic and expert system control techniques. Similarly, it should be
evident from the examples in Chapter 2 that the switching surface (S) is the VSC plan of
action for accomplishing a control task. In the scalar VSC examples, it is a simple plan. If
the VSC reaching variable (o) is positive, a predetermined negative control action is used.
If o is negative, a predetermined positive control action is used. In multi-input cases, the
predetermined inputs are based on the direction of the reaching vector o. Like fuzzy logic
and expert systems, the VSC switching surface can be used to mathematically interpret

literal if-then rules.

The instructions used to train human operators performing a control task are often in the
form of if-then rules. As a result, all three of these control techniques can be useful in
modeling human operator precognitive behavior. [5, 6, 47, 48, 49] However, fuzzy logic
and expert systems usually require “training” of some kind. Whereas, the VSC switching
surface is derived from the dynamics. It is chosen to achieve a desired set of reduced-order
or null-space dynamics. In this sense, the switching surface is considered a mathematical

representation of a control strategy for accomplishing a specific task.

25
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Figure 3.1: Inner/Outer Loop VSM

Consider now the specific task of piloting an aircraft. The pilot’s goal is to safely control
the aircraft’s trajectory relative to the ground. The primary technique pilots are taught
to accomplish this goal is “attitude flying” or using the aircraft’s attitude to control the
trajectory. In this method of flying, the pilot uses the aircraft’s pitch, bank, and power to
control the trajectory. [50, 51] To represent this pilot control strategy, the variable strategy
pilot model is constructed in a classic inner and outer loop configuration, as shown in Figure
3.1. The outer loop (Yp,) translates the guidance and navigation commands into aircraft
attitude and power commands. It is where the pilot’s acquisition strategy is implemented.
The inner loop (Yp;) translates the attitude and power commands into stick, throttle, and
peddle commands. The inner loop is also where the pilot augments the basic aircraft’s

dynamics to achieve better overall task performance.

3.1 Pilot Acquisition Strategy

The outer loop translates the guidance and navigation commands into aircraft attitude and

power commands. In the variable strategy pilot model, it is a manifestation of the pilot’s
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Figure 3.2: VSM Outer Acquisition Loop

acquisition strategy and is the primary focus of this research effort. As discussed earlier,
human operator’s often employ discontinuous control strategies in accomplishing acquisition
tasks. This discontinuous control strategy is modeled with a variable structure control

technique.

Figure 3.2 illustrates the proposed variable structure control representation of the pilot’s
control strategy. The switching surface (S) is the mathematical representation of the acqui-
sition strategy. The switching surface is determined by the physical geometry of the task
to be accomplished and general piloting techniques. As Heffley has shown, these piloting
techniques can be drawn from existing pilot training and flight manual literature. [52] The
simple non-linear element sign(o) is the vector signum function defined by (2.34) and used
to generate the discontinuous pilot commands. The diagonal gain matrix Up,e, (2.35) is a
manifestation of the maximum control amplitudes that the pilot uses for accomplishing the

acquisition task.

While executing an acquisition task, the pilot is attempting to perform large amplitude
maneuvers to quickly reduce the system output errors and error rates. So, the objective of
the acquisition control law is to drive the system state variables to the switching surface

in the minimum time. A time optimal solution to this problem would be a full authority
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bang-bang solution and U,,,; would represent the maximum control available in each axis.
However, as Pew noted, the pilot must tradeoff the cost of a switching time error with the
cost of limiting the velocity of the output to a value less than the time optimal value. [9]
As a result, the pilot typically uses control inputs that are less than the maximum amount
available. An estimate for a reasonable range of these maximum control inputs can be based

on piloting procedures and techniques, similar to Heflley’s approach. [52]

Since the instrument flight rules environment is a more structured flight environment, the
military and civilian instrument flight procedures are used to estimate both the pilot’s switch-
ing surface and controller gain matrices. [50, 51] Although instrument procedures are more
restrictive than visual procedures, they are representative of the “smooth” piloting and “sta-
bilized” flight characteristics desired for commercial aviation. However, an individual pilot’s
gain within this feasible range is determined by the individual’s aggressiveness in performing

the task.

Decision and reaction time delays are critical elements in realistically modeling human oper-
ator performance during an acquisition task. The decision time delay is the time needed for
a pilot to assess the situation and decide upon a course of action. Depending on the task and
the available cues, this time delay is typically greater than one second. The reaction time
delay is the time needed to physically respond to any stimuli. For a task where the pilot
perceives rates and accelerations, the pilot has a certain amount of predictive capability to

overcome reaction time delay.

3.2 Pilot Augmented Aircraft Dynamics

The inner loop of the variable strategy model translates the pilot’s attitude and power
commands into stick, throttle, and peddle movements. In accomplishing this objective, the
pilot augments the basic aircraft’s dynamics to achieve better task performance. The inner

loop is also where the pilot’s tracking strategy is implemented. Figure 3.3 illustrates a block
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Figure 3.3: VSM Inner Pilot Augmented Loop

diagram layout of this control structure.

Two aspects of human operator dynamics included in this control structure are the operator’s
neuromuscular dynamics and the ability of the operator to generate accurate state estimates.
The need for accurate estimates arises from insufficient information in the observation vector,
inaccuracies in human perception (usually modeled as observation noise), and the need to

anticipate the system’s output due to internal human delays and lags.

The inner loop structure shown in Figure 3.3 has many similarities to previous pilot models
such as the crossover model, the optimal control model (OCM), and the modified optimal
control model (MOCM). [2, 3, 53] These models (or non-linear derivatives based on them)

could be used as a basis for modeling the human operator from first principles. [54, 55]

Another method for determining the pilot augmented dynamics of the system is by inter-
preting data from experimental studies. A 1983 study by Heffley used this method for an
analysis of landing flare data. Heflley found that the altitude dynamics of the closed-loop
pilot-vehicle system exhibited characteristics similar to a well-damped, second-order system.

The natural frequency and damping of the closed-loop system could be considered represen-
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tative of the pilot’s aggressiveness in performing the task. Using the assumed closed-loop
dynamics and the known open-loop aircraft dynamics, Heffiey was able to solve for the inner

loop pilot control law (Yp;). [56]

3.3 Example

To illustrate the application of variable structure control techniques to pilot modeling, the
single-input, single-output task of regulating lateral course error is modeled. This task
becomes an acquisition task when a large initial lateral course error is given to the system.
In this example, the aircraft dynamics are approximated by a first order roll lag. The
inner loop dynamics consist of the pilot’s neuromuscular dynamics and reaction time delay
appended to the open-loop aircraft dynamics. Since the pilot began the task from a frozen
time condition, with the initial course error visually displayed, no decision time delay was
used. The pilot’s outer-loop, acquisition strategy is based on a literal interpretation of pilot
training literature. The input/output characteristics of this strategy are compared to the

input/output results of a piloted simulation experiment.

3.3.1 Task Description

The manual control task is the regulation of lateral course error in level, constant airspeed
flight. For this task, aircraft bank angle (¢) is considered representative of the pilot’s input
to control the lateral trajectory. The lateral track error (y;) is the aircraft output response.
To better understand the task, a simple experiment was conducted using the flight simulator
at Virginia Tech. [57] The simulator hardware is a former US Navy 2F122A operational flight
trainer for the A-6E. The cockpit consists of A-6E flight hardware, except for the stick feel
system. The stick is driven by a programmable control loader capable of simulating various
stick dynamics. The visual scene is produced by an Evans and Sutherland night-time visual

computer. It is displayed on pilot front and side calligraphic display monitors. The visual
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Figure 3.4: Lateral Course Regulation VSM Structure

update rate is on the order of 60 hertz. The simulator software has been re-hosted on a
Silicon Graphics Origin 20007 Deskside computer system. This allows the hardware to

simulate a variety of different aircraft dynamics.

A retired US Navy fighter/test pilot flew a model representative of a modern jet fighter in the
approach configuration. The task was to regulate lateral track error based on the localizer
signal and visual references to runway centerline. The visual scene was a fully-lighted night
airport environment, with unlimited visibility and no clouds. The initial conditions were

established at three miles from the threshold with initial lateral course offset of 1000 feet.

3.3.2 Model Structure

The proposed variable strategy model (VSM) for this task closely parallels the modified op-
timal control model (MOCM) developed by Davidson and Schmidt. [53] The VSM is shown
in block diagram form in Figure 3.4. The switching surface matrix S is the mathematical
representation of the pilot’s acquisition strategy. A scalar relay element is used to model the
pilot’s discontinuous control inputs. Referring to pilot training literature, typically bank an-
gles above thirty degrees are considered large in the instrument and approach environments.

[50, 51] Therefore, the acquisition control is a simple relay employing this maximum input.

As in the MOCM development, the pilot’s reaction time delay and neuromuscular charac-

teristics are appended to the aircraft’s dynamic response to form an augmented dynamic
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system. For an aircraft at constant altitude and airspeed (V), a state space representation

of the lateral course dynamics is

g)t = -V sin¢

3.1
¥ Ztang (1)

Il

where the dynamic state variables are: lateral track error (y;, in feet) and heading angle (3
in radians). The input to the system is aircraft bank angle (¢, in radians). The aircraft

dynamics are approximated by a first order lag of the form

RO+ ¢ = ¢, (3.2)

where 7 is the roll mode time constant (in seconds) and @, is the commanded bank angle
(in radians). In this analysis, no display dynamics or simulator delays are considered. The
pilot’s reaction time delay is represented by a second-order Padé approximation,

e _ 1 — 2(745) + 5(7as)?
up(s) 1+ 3(7qs) + %('rds)2

(3.3)

where 7, is the pilot’s time delay (in seconds). The commands u, and ¢, are the command
signals before and after the time delay, respectively. The pilot’s neuromuscular system

dynamics are represented by a first-order lag with time constant 7,.
Tallp + Up = U (3.4)

where u. and u, are the command signals before and after the neuromuscular time lag,

respectively.

Equations (3.1), (3.2), (3.3), and (3.4) are combined to form an augmented system including

the basic aircraft dynamics and the pilot’s human dynamics. A non-linear, state-space
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Table 3.1: Lateral Course VSM Parameters

Airspeed (V) 253 ft/sec
Roll Mode Time Constant (7g) 1.4 sec
Pilot Time Delay (74) 0.15 sec

Neuromuscular Time Lag (7,)  0.13 sec

representation of this system is

yt = -V Sinz/)
Y = &tang
h — —Lgp_8 1
¢ = TR ¢ Trra V1t TR Up (3.5)
3.','1 = —:—d.’lfl bl %xz 4~ Up
Ty = I
p = —1 1
Up = 7 Up —+ 0 Ue

where z; and z, are two state variables for the Padé approximation of the operator time
delay. The numerical values for the state space model in (3.5) are summarized in Table 3.1.

The observable outputs are
T
Yobs = [ Yo U ¢ ] (3.6)
For this example, no observation noise is injected into the output signal, and only the

output signals are used in the acquisition strategy. So, an estimator is not needed for state

reconstruction is needed.

3.3.3 Acquisition Strategy

Since the pilot’s switching surface (S) is a mathematical representation of the acquisition
strategy, it is based upon how the pilot would mentally plan a course intercept maneuver.
As Heflley proposed, the required strategy is extracted from pilot training rules. [52] Both

the military and civil instrument flight training manuals outline simple procedures for lateral
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course intercepts. [50, 51] First, a lead point to initiate a turn can be computed based on
the time needed to complete the final heading change with a commanded rate of turn. And
second, for small heading corrections (usually defined as less than thirty degrees) a bank
angle equal to the heading error should be used. This information can be used to construct

an acquisition switching surface.

When estimating a course intercept, it is assumed that the pilot uses a simple point mass
representation of the aircraft to form the strategy for controlling the aircraft’s trajectory. A

linearized form of (3.1) is the state space model

} 0 -V 0
# 1= s ¢ (3.7)
¥ 0 0 W g/v
The lead point (y;) to initiate the lateral course intercept maneuver is defined by the course
closure rate (7;) and the time to complete the turn (ﬁv) Putting this information together
gives
(4

Y= f/tg (3-8)

Using a linearized form of ¢; and 4 and employing the rule that the bank angle should equal
the heading error (¢ = —1)) gives

V2
Y= ?f/) (3.9)

Since the lead point (y;) is the switch point, it must be on the switching surface (S). This

gives a potential pilot switching strategy of
o= — 2L (3.10)
or a switching surface referenced to the full state space model in (3.5) of the form
Sz[—% 10()00] (3.11)

Putting this switching surface together with 430° relay element gives a pilot control law of

the form

Ue = — (%) sign (¢ - %yt) (3.12)
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The following simulation results were obtained by numerically integrating the non-linear
state space system of equations (3.5) with the VSM acquisition control law in equation (3.12)
using a Runge-Kutta algorithm and a numerical time step of 0.01 seconds. The assumed
parameters of the state space model are given in Table 3.1. The initial conditions were set
for a 1000 feet lateral offset with a heading angle of zero degrees (parallel to the desired

course).

Figure 3.5 illustrates the input/output time history of the VSM acquisition control using
these model parameters. The green line tagged with o’s is VSM’s commanded bank angle,
after the taking into account the neuromuscular and Padé time lags (¢.). The blue line
tagged with x’s is the simulated aircraft’s actual bank angle (¢). The bang-bang nature of

the control strategy is quite evident in the input time history.

Figure 3.6 illustrates an example of the recorded input/output time history of the piloted
simulation. This time history is from one of the early runs when the pilot was exhibiting
significant discontinuous or bang-bang control behavior. There is an initial, near-constant
amplitude input of —30° bank angle followed by near-constant amplitude inputs of +20° and
—10° bank angle.

Comparing the two figures, one can see that the VSM commands are very step-like but the
aircraft’s bank angle is more like a sawtooth response (Figure 3.5); whereas, the piloted
simulation results in Figure 3.6 show a more step-like response in bank angle. This charac-
teristic is probably due to the pilot augmenting the basic aircraft roll dynamics with some
additional command shaping. In addition, the VSM begins a limit cycle response by con-
tinuing to command the maximum allowable back angles. Whereas, the piloted simulation
results show a switch to a smaller amplitude and even continuous control inputs later in the
simulation run. These can be associated with a change in pilot strategy from an acquisition
strategy to a tracking strategy. This transition was explored in more detail in a paper by

Phillips and Anderson. [58]

A more revealing comparison of these strategies is found in the state space trajectories.
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Figure 3.6: Pilot Input/Output Time History
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Figure 3.7: Acquisition VSM State Space

Figure 3.7 illustrates the state space trajectory projected onto the (v, y;) plane for both the
VSM simulation and the flight simulator results from Figure 3.6. The straight red line is
the switching surface (S), the curved blue line is the state trajectory, and the black +’s
are the piloted flight simulator results. In general, the VSM predictions and the piloted
flight simulator results are very similar in structure. In both, there is an obvious oscillatory
response around the switching surface. The primary difference is that the human pilot
appears to be using a slightly different lead point than the one specified in equation (3.9).

In fact a lead point of y; = %1/1 gives a better fit for this particular simulator test run.




Chapter 4

Transport Aircraft Visual Landing

For a multi-input, multi-output dynamic system example, the longitudinal control of a trans-
port aircraft during the visual landing task is examined. Of interest is the closed-loop, pi-
lot/aircraft response due to an incorrect initial condition at the precision approach decision
height. The pilot’s goal is to safely maneuver the aircraft from this incorrect position to
a satisfactory position and energy state before executing a flare. Due to the large initial
spatial error, this task is an acquisition task wherein the pilot is likely exhibit a non-linear,

discontinuous control strategy.

In the VSM, pilot strategies are expressed in the form of a switching surface. These strategies
are constructed by a literal interpretation of pilot training literature as proposed by Heflley.
[20, 52] The closed-loop trajectory responses of the aircraft with these landing strategies are
compared to a set of experimental data generated in a simulator study of pilot response to
vertical navigation errors. [62] Through variation of a simple lead term in the switching

surface, the predicted closed-loop response is shown to bound the experimental data set.

39
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Figure 4.1: Nominal Precision Approach Geometry

4.1 Task Description

A typical precision approach consists of a lateral ground track along the runaway extended
center line and a vertical track that is nominally a —3° glide slope. The glide slope nominally
intersects the runway surface 1000 feet beyond the runway threshold. As a result of this
geometry, the desired flight path crosses the runway threshold at approximately 50 feet. [59]
Figure 4.1 illustrates the nominal precision approach geometry. The pilot tracks this desired
path by instrument navigation cues to an altitude called the decision height. The pilot can
only continue the flight below the decision height if: the aircraft is continuously in a position
to land on the intended runway with normal maneuvering, the flight visibility is not less
than that prescribed for the approach, and the necessary visual reference requirements are

meet. [60]

The visual landing task consists of maneuvering an aircraft from the decision height to

satisfactory landing using visual references. For Category I precision approaches, the decision
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height is normally 200 feet above the threshold. [59] For this study, it is assumed that the
pilot breaks out of the clouds at 200 feet above ground level (agl) with unlimited visibility.
The specific initial conditions of interest are the ones due to a vertical navigation error in
the precision approach glide slope. Any vertical navigation error in the glide slope guidance
results in the aircraft breaking out of the clouds at 200 feet agl and being either farther away
from or closer to the runway than intended. For a negative (low) vertical navigation error,
the aircraft is farther away from the runway than intended. For a positive (high) vertical

navigation error, the aircraft is closer to the runway than intended. [61]

For the current instrument landing system (ILS), this vertical navigation error is an angular
error. If the pilot maintains the indicated ILS glide slope, the aircraft breaks out of the
clouds in an incorrect location, but the flight path is pointed at the intended glide slope
runway intercept point. For a global positioning system (GPS) precision approach, this
vertical navigation error is a linear one. If the pilot maintains the indicated GPS glide slope,
the aircraft not only breaks out of the clouds in an incorrect location, but the flight path is
parallel to the nominal glide slope and pointed either long or short of the intended point on

the runway.

To better understand pilot capabilities to overcome these linear navigation errors, the US
Federal Aviation Administration (FAA) funded a flight simulator study managed by NAV
CANADA. [62] The study employed a Canadian Airlines Boeing 767 simulator and nine
Canadian Airlines B-767 flight crews. The crews flew a total of 117 simulated GPS precision
approaches with vertical navigation errors between —15 and +15 meters. They were given a
candidate GPS landing criteria and were instructed to go-around if the criteria was not met
or if they ever felt they were not in a safe position to land. Due to a data system failure,
the only data recorded was the aircraft trajectory data at a sample rate of 1 hertz and with
an airspeed resolution of one knot. However, this data can be used as a basis of comparison
for trends in the output response of various pilot landing strategies. Additionally, after each
approach the pilots completed a questionnaire specific to the approach just completed. At

the end of each crew’s simulator session, a 30 minute debrief was conducted and another




John Michael Phillips Chapter 4. Transport Aircraft Visual Landing 42
200 ft Decision Height
I R ~ l
N -3° >~ -3°glide slope
Y.
4755 feet 2877 feet S~o_ i-156m
~y
1000 feet

Figure 4.2: Precision Approach Geometry with Vertical Error

questionnaire was completed.

Figure 4.2 illustrates the precision approach geometry with a vertical navigation error. At
200 feet agl, the nominal —3° glide slope places the aircraft 3816 feet from the desired glide
slope runway intercept point. A —15 meter vertical navigation error places the aircraft at
4755 feet with its glide slope runaway intercept point “short” of the desired location. A +15
meter vertical navigation error places the aircraft at 2877 feet with its glide slope runaway
intercept point “long” of the desired location. Therefore, the £15 meter vertical navigation

error results in a £939 feet error in the longitudinal position of the aircraft.
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4.2 Model Detalils

In this section, a Variable Strategy Model for the visual landing task is developed along
the lines described in Chapter 3. First, a structure for the inner loop or pilot augmented
dynamics is defined. Then the variable structure control law for the outer or acquisition loop
is developed. This control law is a simple relay with a switching surface. Both the magnitudes
of relay control inputs and the switching surface are based on a literal interpretation of pilot
training literature. Finally, since the visual landing task blends directly into a landing flare

maneuver, a simple flare control law is used to complete the landing trajectory.

4.2.1 Pilot Augmented Dynamics

The basic dynamics of interest for this task are the aircraft flight path dynamics. It is
assumed that the pilot controls the flight path and velocity of the aircraft using the aircraft’s
pitch attitude and thrust. Similar to a point mass representation of the aircraft’s flight path
dynamics, the effect of the elevator deflection on the aircraft’s velocity and angle of attack
dynamics are ignored. Although the non-linear form of the aircraft’s flight path dynamics
could be used, the magnitude of the initial errors and the pilot control inputs considered for
this study are well within the linear response of the aircraft. Therefore, the linearized form

of the flight path dynamics is used.

For an aircraft with zero thrust incidence angle, the linear form of the flight path dynamics

is given by
7= - (Rt ) Ay + (et ) A0+ (i) AV + (miies) ¢
f = ¢ (4.1)
Vo= (% - goosm) Ay — (3) A0+ (BgPe) AV + (Ba=) £7

where 4, is the trim flight path angle, A+ is the perturbation of the flight path from the trim
value, A# is the perturbation of the pitch attitude from the trim value, q is the aircraft pitch

rate, V, is the trim airspeed, AV is the perturbation of the airspeed from the trim value,
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T, is the trim thrust, AT is the perturbation of the thrust from the trim value, T;,.; is the
maximum thrust, m is the mass of the aircraft, and {L,, D,,, and Ty, } are the aircraft lift,

drag, and thrust dimensional stability derivatives.

It is assumed that the pilot performs an inner-loop stabilization on the basic aircraft dy-
namics to achieve a set of desired closed-loop pitch dynamics. In an effort to concentrate on
the effects of the outer-loop, discontinuous acquisition strategy, a set of well behaved pilot
augmented pitch dynamics is defined. This model form allows for analysis of the task and
strategy instead of the typical handling qualities issues involved in evaluating a particular
aircraft’s ability to perform a task. The form of the pilot-augmented pitch dynamics is based

on the Neal-Smith criteria. [63, 64]

Examining the Neal-Smith closed-loop pitch criteria, the pitch command (6.) to aircraft
pitch attitude () frequency response is similar to a second order system response of the

form

G + 2npwp q + w20 = w20, (4.2)

If this is taken as an idealized form of the pilot augmented pitch response, then the natural
frequency (wp) can be equated with the Neal-Smith bandwidth and the damping ratio (,)
can be correlated with the resonant peak (| Ef&: |) One desirable characteristic in the closed-
loop pitch response is to limit the resonant peak; therefore, a value of n, = 0.7 is used in
the desired dynamics. There is significant discussion in the flying qualities literature for
desirable values of pitch bandwidth. MIL-STD-1797A recommends 2.5 radians/second for
the landing phase. [65] Since this value was based on the fighter configurations of the Neal-
Smith study, researchers evaluating transport aircraft in the landing phase have found this
level of bandwidth to be abrupt. Weingarten found in piloted simulations of very large
aircraft (i.e. approximately one million pounds) a pitch bandwidth of 1.5 radians/second

was more representative of the data. [66]

A discontinuous input, such as that generated by the outer-loop VSM acquisition strategy,

tends to excite high frequency dynamics. To keep the model simple, this VSM does not
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model any of the physical pilot/vehicle dynamics which would tend to attenuate these dy-
namics. These potential attenuating sources include pilot neuromuscular lag, reaction time
delays, stick dynamics, actuator dynamics, etc. Also, the NAV CANADA study employed
operational flight crews employing operational flight procedures, not test pilots. The oper-
ational flight crews are likely to perform the task at a lower bandwidth. In addition, since
it simulated an actual landing, the NAV CANADA study was a multi-axis task. It is well-
known that the bandwidth of each axis is reduced as the pilot is required to control more
degrees of freedom. As a result, an inner loop pitch bandwidth of w, = 0.5 radians/second

was used and found to generate trajectories representative of the NAV CANADA data set.

It is assumed the pilot does not augment the engine dynamics. As a result, the engine
dynamics are modeled as a simple lag with a time constant 7, = 2 seconds. In terms of the

linear perturbation variables this gives

T 1(AT_ATC)

- Tmaz Tmaz (4 ' 3)

Tmaz Te

where AT, is the pilot’s commanded change in thrust from the trim value.

In addition to the aircraft state variables, the navigation error for the landing task is ex-

pressed as a glide slope deviation error (d) illustrated in Figure 4.3.
d=h-—2ztan", (4.4)

where 7, = —3°. Differentiating (4.4) gives

d=h—itany, (4.5)
where
h = Vsin
7 (4.6)
r = Vcosy

Linearizing about the trim condition V, and v, gives a kinematic relation of the form

A (4.7)




John Michael Phillips Chapter 4. Transport Aircraft Visual Landing 46

xtan(y,) Glide Slope Runway

Intercept Point

Runway Threshold

Figure 4.3: Glide Slope Deviation Geometry

Putting equations (4.1), (4.2), (4.3), and (4.7) together gives following the state space repre-
sentation of the pilot-augmented vehicle dynamics. The state variable vector is represented

by

T
z= [ d Ay A6 AV ¢ T‘:L ] (4.8)
and the pilot control vector
T
v=| o, (22), 49)

The pilot augmented dynamic system is represented by

& = Az + Bu (4.10)
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where the plant matrix A is

0 o 0 0 0 0
La+To—mgsiny, ot Ty L L+L
0 - ( +m‘/ng(: : ) (nf%-:—qlla) (’mVa"{'Ld) (mVo-de) 0
Ao 0 0 0 0 1 0 (4.11)
o (B-sesn) B () 0 B
0 0 —w? 0 —2nw, 0
K 0 0 0 0 -—;1; |
and the input matrix B is
T
0000 0 X
B= Te (4.12)
0000w O

Stability derivatives were not available for a Boeing 767. As a result, the stability derivatives
for a Boeing 747 were used to represent a large transport aircraft. [67] Using the B-747
stability derivatives and the parameter values given in Table 4.1, the numerical values used

for the linear plant and input matrices were

0 2213 0 0 0 0
0 —0.4802 0.4728 0.001269 0.06079 0
0 0 0 0 1 0
A= (4.13)
0 -11.55 —20.58 —0.04551 0 9.927
0 0 —0.25 0 —-0.7 0
| 0 0 0 0 0 ~0.5 |
and
T
0000 O 05
= (4.14)
0 00002 0
The characteristic equation for this system is
Aa(d) = A (A2 +0.73 +0.25) (A + 0.5) (A + 0.08235) (A + 0.4434) (4.15)

with eigenvalues

A = {0, —0.35 = 0.3571i, —0.5, —0.08235, —0.4434} (4.16)
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Table 4.1: Summary of Transport Aircraft Model Parameters.

Parameter Value

Vo 221 ft/sec (or 130 kts)
Yo -0.05236 radians (or —3°)
m 17530 slugs (564,000 Ibs weight)
T, 83,900 lbs

Tnes 174,000 1lbs
Te 2 seconds
Wy 0.5 radians/sec
Tp 0.7

The zero eigenvalue is from the glide slope kinematics. The complex pair of eigenvalues are
from the desired pitch dynamics. And the eigenvalue of -0.5 is from the engine dynamics.
The additional pair of real eigenvalues are approximately the numerator zeros from the pitch

transfer function of the open-loop aircraft dynamics. [65, 68]

One method of categorizing an aircraft’s dynamic response characteristics is whether it
operates on the front side or back side of the thrust required curve. MIL-STD-1797A defines
an aircraft as operating on the front side if g% is negative at the trim flight condition. An
aircraft is operating on the back side if %3 is positive. [65] This derivative can be estimated
from the linearized equation of motion along the velocity axis in equation (4.1). For the
unforced response of the aircraft near the trim condition of steady, straight, symmetric,
flight
V = 0

(4.17)
A = AT = 0

From the remaining terms in the V equation (4.1), the derivative ‘—3% is

6’)’ A’)’ TV — DV
— ~ = 4.18
<8u> vy, AV mgcosy, — D, (4.18)
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The linearized Boeing 747 model for approach conditions used in (4.13) yields

(.al) ~ —0.134°/KTAS (4.19)
ou V=V,

Because —g% is negative, the B-747 model is operating on the front side of the thrust required

curve during approach, like most jet transport aircraft.

4.2.2 Acquisition Control Law

The acquisition (outer loop) control law is assumed to be a relay control, generating dis-
continuous pitch and thrust commands. Since it is assumed that the pilot is attempting to
perform a minimum time solution, the form of the control inputs are a “bang-bang” formu-
lation where each individual control is always commanded to its maximum allowable limit.
The magnitudes of the pitch inputs are based upon the various sources of pilot training
literature that are summarized in Table 4.2. As representative values, nose up commands
of +3° and nose down commands of —2° were chosen to reflective the tendencies of pilot
to use greater nose up pitch authority than nose down when operating close to the ground.
The magnitude of the thrust commands were based on thrust settings that achieve vertical
velocities of 0 feet per minute (+12%) and -1100 feet per minute (-12%) for the aircraft
model being employed. These values are representative of a pilot’s preference to at most
level off during an approach and to not exceed ground proximity warning system (GPWS)

limits.
The acquisition control law can then be expressed as

+3° for o5 <0

(A0), =
~2° for 0y >0
(4.20)
(_ﬂ) _ +12% fOI‘ UT<0
Tmaz c

-12% for o, >0
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Table 4.2: Pilot Training Rules for Pitch Commands during Approach.

Source Purpose Pitch Inputs

US Air Force [50] ILS +2° —2°

US Air Force [50] Climb/Descent Level Off +3.7° -2.1°
(A0 = ) (0 fpm)  (-1100 fpm)

FAA [51] ILS +2.50 —2.5°

NAV CANADA [62] Visual Landing +2° —20

Delta [69] Definition Unstable Approach +5° —5°

where oy and o, are the switching variables defined by

N (4.21)

Or

The switching surface S is the mathematical representation of the pilot’s acquisition strategy.

As discussed in Chapter 3, an additional part of a human operator model is the operator’s
predictive capabilities to alleviate the reaction time delay and estimating capabilities to over-
come imprecise observations. Although deficiencies in these capabilities can play a significant
role in tracking tasks, it is assumed that they are not as significant in an acquisition task.

This assumption allows for a clearer comparison of various acquisition strategies.

Although it is assumed that the pilot can counteract the reaction time delay, no amount of
predictive capability can be used to alleviate the decision time delay encountered when the
pilot first breaks out of the clouds. This delay is the amount of time required for the pilot
to reorient from the incorrect instrument navigation cues to the correct visual environment
and to decide on a course of action. A study conducted by the US Air Force employing
multi-crew, transport aircraft in actual weather concluded that it typically takes a heads
down pilot three seconds to transition to the visual flight environment. [70] It was found

that lateral guidance cues develop earlier with aim point and flare control developing last.
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It has also been generally accepted that pilots make the transition to visual flight cues quicker
in a simulator than in actual weather. [56] This result may be due to simulator visual systems
that transition from zero visibility to the prescribed flight visibility almost instantaneous at
a specified altitude. Whereas, in reality, the flight visibility gradually increases as the clouds
gradually thin out. A review of the NAV CANADA simulator data showed that although
many pilots reacted faster, a three second decision time delay was representative of the slower

pilots response. Therefore, a 3 second delay was used in this study.

4.2.3 Front-Side Landing Strategy

In the VSM, the switching surface S is the mathematical representation of the pilot’s acquisi-
tion strategy. Heflley explored using pilot training literature to construct switching surfaces
for single-input, discrete tasks. These tasks included aircraft flare, heading, altitude, and
airspeed changes. [20, 52] Two good references for pilot procedures on these and other tasks
are the US Air Force Flying Operations: Instrument Flight Procedures [50] and the FAA
Instrument Flying Handbook. [51] Heflley’s approach is adopted for this study and applied

to the multi-input visual landing task.

A primary theme in pilot training literature is to describe multi-input tasks as multiple,
decoupled single-input tasks and to recommend aircraft attitude commands to achieve the
desired task. The pilot is expected to develop more refined control strategies as experience
in the aircraft and task is gained. In general, transport aircraft pilots are taught to land
an aircraft using a front-side landing technique. A front-side landing technique refers to the
dynamics of the aircraft on the front side of the power curve where pitch attitude can be
used for flight path control and power for airspeed control. A back-side technique refers to
the unstable dynamics of the back side of the power curve where thrust must be used for

flight path control and pitch for airspeed control. [65]

A simple mathematical representation of a front-side landing strategy as a decoupled switch-
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ing strategy for the control law in equation (4.20) is

opg = d
? (4.22)
o, = AV
This control law would command a nose-up pitch command for low glide slope deviations,
nose-down for high glide slope deviations, increased thrust for slow airspeed deviations, and

decreased thrust for fast airspeed deviations.

This strategy represents the simplest front-side control strategy implemented by a beginning
pilot. A slight improvement can be made by estimating a lead point for glide slope intercept.
Using the kinematic relation given in equation (4.7), a lead term (k;) can be introduced by

adding a flight path error to the pitch strategy to yield

op = d+kid = d+kife-Ay (429
o, = AV

or in terms of the switching surface

5, = 1 kjgpe- 0000 (4.24)
0 0 0100

Since various aircraft have substantially different pitch dynamics, a specific value for k;
is difficult to ascertain from the general pilot training literature. Its value is determined
from experience in the aircraft being flown. One method to approximate this lead term is to
examine the method pilots are taught to level off from climbs and descents. Pilots are taught
to calculate a lead point for leveling off based on 10% of the indicated vertical velocity in feet
per minute (fpm). [50, 51, 52] So, for a -700 fpm descent, the pilot should begin commanding
a level off 70 feet above the target altitude. Taking into account the conversion from feet

per minute to feet per second, this altitude can be expressed as
h = —6h (4.25)

Using this value as a maximum, a reasonable range for the glide slope lead term of 0 < k; < 6

seconds was used for this study.
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In addition, since the front-side strategy uses thrust for airspeed control, it was not considered
reasonable to use the large thrust setting prescribed by equation (4.20) for small airspeed
deviations. Therefore, a one-half knot indifference threshold was used for the thrust relay
control in equation (4.20) for the front-side strategy only. This threshold significantly reduced

thrust command chatter to generate more realistic commands.

4.2.4 Flare Control Law

In addition to the limited time of flight for the visual landing task (typically 15 to 25 seconds),
another difficulty in analyzing the pilot’s response is ill-defined the terminal conditions of
the task. At some point, the acquisition task must end, and the landing flare must begin.
A pilot typically makes a judgement of when and how large a flare to perform based on the
aircraft’s energy state (airspeed, altitude, flight path, and their respective rates of change)
and location relative to the runway. Several different pilot flare models have been proposed
by various researchers. A good summary can be found in a report by Heflley. [56] In general,
the structure preferred by Heffley is a precognitive or discrete maneuver starting at a flare

initiation altitude. [20, 52, 56]

A very simple flare model is used based on pilot training literature. Using the level off rule

expressed in (4.25), the flare initiation altitude can be approximated by
Rgare = —6 A (4.26)

It is interesting to note that although Heffley defined a more detailed flare model, using the

nominal landing flare data in [56] gives a flare initiation relation of hgare = —5.7 h.

For a typical large transport aircraft, the pilot attempts to achieve a 4° to 5° pitch attitude
and use the throttles as needed during roundout and ground effect. [56] For the aircraft

dynamics used for this study (that lacked any ground effects) the following flare commands
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were found to be fairly robust and were used for a flare command

(AB)g,, = +4°

flare

(22) = o (4.27)
maz / flare

4.3 Simulation and Analysis

To simulate the response of these control strategies, the linear system described by equa-
tions (4.10), (4.13), and (4.14) with the pilot control law described by equations (4.20) and
(4.23) were numerically integrated using a fourth-order Runge-Kutta integration scheme
with a time step of 0.05 seconds. During the integration, the relay control inputs were held
constant for the entire integration time step. The initial conditions of interest were the
“short” longitudinal initial condition due to a -15m vertical navigation error and the “long”

longitudinal initial condition due to a +15m vertical navigation error.

Figure 4.4 illustrates the state variable and control trajectories employing a front-side pilot
strategy with no glide slope deviation lead term (k; = 0 seconds) for the short initial condi-
tion of 4755 feet from the glide slope intercept point. The x’s are the NAV CANADA data
set. The red (straight) line in the top (altitude verses distance) graph is the desired —3°
glide slope. The blue lines tagged with squares are the simulated state trajectories using
the front-side strategy (4.23) with no lead. The green step inputs in the bottom two (A6
and ,_,—ffn% verses distance) graphs are the discontinuous control inputs. In this simulation,
the flare maneuver is begun at approximately 900 feet from the desired glide slope runway
intercept point or 100 feet past the runway threshold. In general, this simulation does a
fairly good job of reproducing the trajectories of the NAV CANADA pilots responding late

to the glide slope acquisition task and overshooting the desired glide slope.

Figure 4.5 illustrates the state variable and control trajectories employing a front-side pilot
strategy with k; = 6 seconds. The blue lines tagged with diamonds are the simulated

state trajectories using the front-side strategy (4.23) with lead. In this simulation, the flare
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Figure 4.5: Short Initial Condition Response with Lead

maneuver is begun at approximately 1600 feet from the desired glide slope runway intercept
point or 800 feet past the runway threshold and at an altitude of approximately 80 feet.
This values of lead brackets the lower trajectories in Figure 4.5. The deviation of the VSM
simulated trajectory and the NAV CANADA trajectories within 900 feet are due to the flare

model and not the acquisition strategy.

Figure 4.6 summarizes the trajectory response of the previous two cases. Except for some
variation in decision time delay in the NAV CANADA data set, the model response is

representative of the range of responses of the slower reacting pilots in the data set. The
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Figure 4.6: Summary Short Initial Condition Response

most significant difference is in the airspeed and flight path of the model and the data set
within 1000 feet of the glide slope intercept point. Since this point is over the runway
threshold and after the model’s flare initiation, this characteristic is due to incomplete flare

and ground effect modeling.

In general, varying the lead term (k;) over the range from 0 to 6 seconds primarily affected
the glide slope overshoot characteristics of the closed-loop trajectories and had a negligible
effect on the cross over frequency of the closed-loop system. Overall, this range of lead terms

appear representative of the varied task performance of the pilots under study.
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Figure 4.7: Long Initial Condition Response with No Lead

A similar analysis was conducted for the long initial condition of 2877 feet from the glide
slope intercept point due to a vertical navigation error of +15 meters. Figure 4.7 illustrates
the closed-loop system response of the front-side strategy with no glide slope deviation lead
term (k; = 0 seconds). After the three second decision time delay and the initial control
inputs, the control activity is minimal. Two degrees nose down pitch attitude is commanded
in an attempt to acquire the desired glide slope. Then at approximately 1000 feet from the

glide slope runway intercept point, the flare is initiated.

Figure 4.8 illustrates the closed-loop system response of the front-side strategy with a glide
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Figure 4.8: Long Initial Condition Response with Lead

1000

slope deviation lead term of k; = 6 seconds. Figure 4.9 summarizes the trajectory response

of the previous two of no lead and k; = 6 seconds. The two trajectories are nearly identical.

Although the data set shows significantly more scatter than the simulation results, the

simulation is successful in reproducing the trajectory of a typical if not slightly less aggressive

pilot. It also highlights that for the long initial condition there is insufficient time or space

to generate much of a trajectory response. As a result, the system response is dominated by

aircraft performance, namely the maximum safe sink rate of approximately -1100 feet per

minute.




John Michael Phillips Chapter 4. Transport Aircraft Visual Landing 60

200 T T I
: : > B A : —8- Front Side No Lead
180 -~ - e ............... —&— Front Side Lead -
- : : M SR x NAV CANADA data
100 - T e )(.x.,: ................ R ]
- : : : S :
50 P s 2% B Y
0 1 1 1
-5000 -4000 -3000 ~2000 -1000 0 1000
x (ft)
5 ! ! ! ! !
: : : X XXX XK X XX X X
— XX XK XX XX KX R
[7) . A :
g 0 T > e ALTAN > b X
> :
< ;
B e R R R TR R P [V S Xooooe X
l { 1 x X ix X X
~5000 ~-4000 ~-3000 -2000 -1000 0 1000
x (ft)
2 T T T T T

Figure 4.9: Summary Short Initial Condition Response




John Michael Phillips Chapter 4. Transport Aircraft Visual Landing 61

Applying the VSM methodology with a pilot strategy based on a literal interpretation of
pilot training guidelines is successful in reproducing the trajectory responses observed in
the NAV CANADA study. However, since no pilot command inputs and aircraft attitude
measurements are in the data set, it can not be determined if the pilots are using a relay

control law like the one in the model.




Chapter 5

Pilot Landing Strategies

In Chapter 4, the performance of a front-side landing strategy applied to an aircraft operating
on the front side of the power curve was successfully compared to the NAV CANADA
simulator data set. A back-side landing strategy could just as easily be implemented in the
VSM. In the pilot community, the benefits of these two simple pilot training strategies are a
continuing source of debate. In 1944, Langewiesche devoted a significant portion of his classic
flying book Stick and Rudder to this debate and to the virtues of back-side flying techniques.
[71] The debate is whether pilots should be taught to land an aircraft by front-side or back-
side techniques. Conventional wisdom is that both front-side and back-side landing strategies
can be employed on an aircraft operating on the front side of the power curve. But only
back-side landing techniques are successful in controlling an aircraft operating on the back

side of the power curve. [64]

This chapter explores this issue by applying both types of landing strategies to both types
of aircraft dynamics. Since a representative front-side aircraft and landing strategy was
developed in Chapter 4, this chapter begins by defining a suitable back-side aircraft dynamic
model and landing strategy for the comparison. Next, each type of strategy is applied to

each type of aircraft. This comparison confirms the conventional wisdom.

62
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5.1 Model Detalils

Flying an aircraft at a speed on the front side of the power curve provides for stable open-
loop dynamics in all modes. When an aircraft flies on the back side of the power curve it
is typically done to achieve the lowest safe approach speed. However, at this speed, the
open-loop aircraft’s speed dynamics are unstable. The next example explores the effect of

this unstable, open-loop plant on the pilot’s acquisition strategy for the visual landing task.

5.1.1 Pilot Augmented Dynamics

The physical method for making an aircraft operate on the back side of the thrust required
curve is to slow its speed. However, since a slower trim airspeed would allow more time
to implement course corrections, it does not allow for an equal comparison of pilot control
strategies for front-side and back-side aircraft dynamics. Instead, the stability derivative D,
is modified to generate the back-side aircraft dynamics at the same trim airspeed, angle of
attack, lift, drag, and thrust. A value of

(?1) =0.03°/KTAS (5.1)
ou VeV,

puts the aircraft on the back side while maintaining the value of g% within the bounds for

Level 1 flying qualities as defined by MIL-STD-1797A. [65] Since

Ll ~_ v —Dy (5.2)
Ou/)y_y —~ mgcosy,— Dy '

using (5.1) and the nominal values of Ty, Dy, m, V,, and v, for the B-747 approach conditions

gives a value of D, = 1.47 x 10° Ibs to model the desired back-side dynamic characteristics

(verses the nominal front side value of D, = 0.360 x 10° lbs). [67]

The basic functional form of the inner loop dynamics are the same as the previous chapter.
The only difference is that D, = 1.47x10° Ibs. However, note this model no longer represents

a B-747 but the dynamics of some fictional back side aircraft operating at the same trim
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flight condition as the B-747 with the same inertial properties and thrust to weight as the

B-747 model. The inner loop plant matrix is now

0 2213 0 0 0 0 |
0 —0.4802 0.4728 0.001269 0.06079 0
0 0 0 0 1 0
A= (5.3)
0 5143 —83.60 —0.04551 0  9.927
0 0 —0.25 0 -07 0
0 0 0 0 0 —05 |

and the input matrix B remains the same as the front-side aircraft example of the previous

chapter, see equation (4.14). The characteristic equation for this system is
Ag(A) = X (A +0.72 4 0.25) (A + 0.5) (A — 0.0726) (A + 0.5983) (5.4)
with eigenvalues
Ai = {0,-0.35 £ 0.3571%, —0.5, +0.0726, —0.5983} (5.5)

The most noticeable difference between these eigenvalues and the ones for the front-side
aircraft (4.16) is the positive real roots at 0.0726. This root is associated with the unstable

speed dynamics of an aircraft operating on the back side of the power curve.

5.1.2 Acquisition Control Law

The same outer loop control structure as in the transport aircraft example is used for the

back-side aircraft, see equations (4.20) and (4.21).
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5.1.3 Back-Side Landing Strategy

A simple mathematical representation of a back-side landing strategy as a decoupled switch-

ing strategy for the control law in equation (4.20) is

og = —AV
? (5.6)
o, = d+ kd%ﬁ,—oA’Y
A back-side switching surface (S,) in terms of the state variables in equation (4.8) is
0 0 0 -1 00
1 kize— 0 0 00

This control law would command a nose-up pitch command for fast airspeed deviations,
nose-down for slow airspeed deviations, increased thrust for a low glide slope deviations, and

decreased thrust for a high glide slope deviations.

5.1.4 Flare Control Law

A similar flare command is used with the same flare initiation altitude (4.26) except a thrust

setting of +12% instead of 0% is used.

AG = 44°
(AT)ﬂa,re (58)
(AL ) e = 12%

5.2 Simulation and Analysis

To reduce the number of comparisons, both the front-side (4.23) and back-side (5.6) landing
strategies are applied with a glide slope lead term of k; = 1 second. Other values for the
glide lead constant were explored, and the results for k; = 1 second are representative of
the trends in the other cases. Next each strategy is applied to each type of aircraft dynamic

model for the long and short initial conditions studied in Chapter 4.
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5.2.1 Front-Side Aircraft Dynamics

To simulate the front-side aircraft dynamics, the linear system described by equations (4.10),
(4.13), and (4.14) was integrated with the pilot control law described by equation (4.20).
Figure 5.1 illustrates the trajectory response of the closed-loop pilot/vehicle system for the
short initial condition. The lines tagged with blue squares represent the system response us-
ing a front-side strategy, equations (4.20) and (4.23). The lines tagged with triangles squares
represent the response using a back-side strategy, equations (4.20) and (5.6). Although the
back-side strategy regulates the aircraft’s velocity better than the front-side strategy, the

two have similar trajectory responses.

Figure 5.2 illustrates the pitch response and command of the two strategies for the short
initial condition. The upper graph is the aircraft’s pitch attitude. The line tagged with
squares is the response of the front-side strategy. The line tagged with triangles is the
response of the back-side strategy. The middle graph (tagged with squares) is the pitch
attitude command by the front-side strategy. The lower graph (tagged with triangles) is
the pitch attitude command by the back side strategy. The back-side pitch commands are
more active since they are performing essentially the regulating task of maintaining airspeed;
whereas, the front-side pitch commands are less active performing the glide slope acquisition
task. The front-side strategy initiates the flare maneuver at approximately 1100 feet from
the desired glide slope runway intercept point. The back side strategy begins a flare at
approximately 400 feet.

Figure 5.3 illustrates the thrust response and commands of the two strategies for the short
initial condition. More differences between the two strategies input behavior are evident in
this figure. Since in the back-side strategy the thrust is responsible for the acquisition of
the glide slope, the back side thrust commands are much more active and aggressive than
the front-side thrust commands. In the front-side strategy, the thrust is responsible only for
regulating the aircraft’s velocity. This thrust control of the glide path is also the reason the

back-side strategy requires more thrust to flare the aircraft.
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Figure 5.1: Front-Side Aircraft Response for Short Initial Condition

67




John Michael Phillips Chapter 5. Pilot Landing Strategies 68

—= Front Side
—A— Back Side : : : :
-5 1 1 ] 1 !

-5000 -4000 -3000 —2000 -1000 0 1000
x (ft)
5 T T T I'_| _ T _ _
=)
38 : ; ; ; :
~ 0....5,—5,_.: ................ I S R B eI RIS —
o’ : ; ; : :
< = =)

—= Front Side
I

-5
-5000 -4000 ~-3000 -2000 ~-1000 0 1000
X (ft)
5 ! T l ! !
: : : : .y A A
A A A ras
5 : .
3 : : : : :
~ O_A____A_ ................ L A I T I Y S IR R I ]
a° : : : : ;
< ; A : A
—A— Back Side :
-5 I ! 1 1 L
-5000 ~-4000 -3000 -2000 -1000 0 1000
x (ft)

Figure 5.2: Front-Side-Aircraft Pitch Input for Short Initial Condition
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Figure 5.4 illustrates the trajectory response of the closed-loop pilot/vehicle system for the
long initial condition. The system responses of the front-side and back-side strategies are
very similar. The pitch commands for the two strategies are also nearly identical with both
beginning a flare at approximately 1000 feet from the desired glide slope runway intercept
point. As for the short initial condition, the thrust inputs for the back-side strategy are
more aggressive than the front side; however, due to the slow aircraft dynamics, instead of
increasing the glide slope capture, it primarily generates a need for greater thrust in the
flare. These responses illustrate that the long initial condition response of the closed-loop
system is primarily performance limited. A difference in strategy has very little effect on the

trajectory response.

Even though the two strategies employ different control inputs, the trajectory response of
both for the front-side aircraft is similar. This was a common characteristic observed for
various other initial conditions and values for the glide slope lead term (k;) explored. From
a trajectory stand point, both strategies would appear to be successful in maneuvering an

aircraft on the front side of the power curve.

5.2.2 Back-Side Aircraft Dynamics

To simulate the back-side aircraft dynamics, the linear system described by equations (4.10),
(5.3), and (4.14) was integrated with the pilot control law described by equations (4.20),
(4.23), and (5.6). Figure 5.5 illustrates the trajectory response for this closed-loop pi-
lot/vehicle system for the short initial condition. Unlike the front-side aircraft response
(Figure 5.1) this aircraft shows a dramatic difference between in the trajectory response due
to the front-side and back-side strategies. The front side strategy is not sufficient to stabilize

the airspeed dynamics.

Figures 5.6 and 5.7 illustrate the pitch and thrust commands, respectively, for each strategy.
In general the back-side strategy is more aggressive in attempting to stabilize the airspeed

dynamics. This result can be seen in the more active pitch commands (Figure 5.6) that the
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Figure 5.5: Back-Side-Aircraft Response for Short Initial Condition

backside strategy is using to control airspeed, and the earlier application of thrust (Figure
5.7) that the backside strategy is using for glide slope acquisition. Note from Figures 5.6
and 5.7 that the front-side strategy initiates the flare maneuver at approximately 1100 feet
from the desired glide slope runway intercept point. Thus the flare initiation is well after the
airspeed divergence in Figure 5.5 meaning this unstable behavior is due to the acquisition
strategy and not the flare commands. Although greater values of glide slope lead (k;) improve
both strategies performance; in general, the front-side strategy is insufficient to stabilize the
airspeed dynamics. Therefore, one can conclude that a back side landing strategy is required

to land an aircraft flying on the back side of the power curve.
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Figure 5.8 illustrates the trajectory response of the two strategies from the long initial
condition. The command responses of the for the two strategies are very similar, and both
strategies begin the flare maneuver just inside of 1000 feet. For this initial condition, the
back-side strategy does a slightly better job regulating the aircraft’s airspeed during the
landing segment than the front-side strategy. The excess speed loss of both strategies within
1000 feet is due to the flare command laws and the lack of ground effect modeling. Once
again, the long initial condition response is limited more by aircraft performance than by

piloting strategy.




Chapter 6

Refined Pilot Landing Strategies

Pilot training literature tends to describe multi-input tasks as multiple, decoupled single-
input tasks. The previous chapters explored pilot landing strategies based on this concept
and a literal interpretation of front-side and back-side landing techniques. These generic
landing strategies were useful in bounding the pilots’ performance in the NAV CANADA
data set. However, an experienced pilot is expected to develop more refined strategies as
experience in the aircraft and task is gained. This experience is reflected in a piloting
strategy which reflects the dynamics of the particular aircraft being flown by introduction
of cross-coupling terms in the strategy. These cross-coupling terms may be identified by
experimental methods; however, detailed input/output data was not available in the NAV

CANADA data set.

Instead, a more theoretical framework is proposed to identify candidate refined landing
strategies. The basic methodology is to explore the concept that the switching surface is a
mathematical representation of the pilot’s strategy. In control terminology, by choosing a
switching surface, the pilot is defining the placement of the open-loop transmission zeros and
defining the null space or reduced-order system dynamics. [32, 72] If this is the case, a set
of desired null space dynamics can be defined. Then an eigenstructure assignment method

(section 2.1.1) can be used to define a switching surface to achieve the desired dynamics and

(i
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implement a refined pilot strategy.

This chapter uses the point mass characteristics of an aircraft to define the desired null space
dynamics. These desired dynamics are applied to the front-side aircraft model of Chapter
4 and the back-side aircraft model of Chapter 5. This application illustrates how a pilot
would achieve the desired dynamics with two different types of plant dynamics. Finally, an
attempt is made to translate these switching surfaces back into a terminology that may be

beneficial in communicating to a pilot learning to land these particular aircraft models.

6.1 Desired Null Space Dynamics

The range space dynamics of both the front and back side aircraft models are sixth (n = 6)
order systems. Since both models use two controls (m = 2), the desired null space dynamics
are fourth (n — m = 4) order systems. Therefore, four eigenvalues and portions of their
associated mode shapes can be specified. Two of these modes can be determined from
examining an ideal trajectory. The other two are based on the augmented pitch dynamics

the pilot introduces into the inner loop stabilization of the aircraft.

Applying the front-side (4.24) and back-side (5.7) strategies as output matrices with a k; = 1,
to both the front-side (4.13) and back-side (5.3) plant and input matrices (4.14) creates the
same set of open-loop transmission zeros. These transmission zeros are located at -1 and
approximately -7.8. These values are used as two of the desired null space eigenvalues. How-
ever, since neither (S;B)™ nor (S,B)™! exist, the zero input directions of these transmission
zeros cannot be associated with a null space eigenvector, as in (2.9) thru (2.11). Therefore,
the mode shapes are determined by examining the dynamics of an ideal or generic aircraft

landing trajectory.

A pilot may visualize an ideal aircraft trajectory as one free of the aircraft’s pitch and thrust

dynamics. Such a trajectory is modeled as a point mass representation of the aircraft. For
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the visual landing task, consider the linear system

d 0 o 0 d 0 0 Ag
o La+To—mgsiny, L o+ To
YIT|0 - ( +mVngz . ) (mVo“:‘Ld) Ay |+ (75%-5@) 0 AT
14 0 (%“ - gcos'yo) (T—‘L—K:nD ) AV —Da Tme | L Tres
and ideal switching surfaces based on the pilot training literature of
(1 k% 0
Sri = deoso (6.2)
0 0 1
(0 o0 -1
Sy = v (6.3)
! 1 kdm 0
Using the B-747 model parameters and k; = 1, these equations become
d 0 2213 0 d 0 0 A)
4 1=1]0 —0.4802 0.0013 Ay | +] 04728 0 . (6.4)
1% 0 -11.55 —0.04551 AV —20.58 9.927 Tmaz
along with the switching surfaces of
(1 2213 0
S = (6.5)
0 0 1
(0 0 -1
Sw = (66)
1 2213 0

Since the ideal, point mass model is a third order (n = 3) with two controls (m = 2), the
reduced-order dynamic system is only a first order system (n —m = 1). The null space
dynamics for both the front-side (6.5) and back-side (6.6) strategies is the first order system
defined by the eigenpair

Am=-1, =] 0 (6.7)
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So the desired eigenvalue of -1 can be associated with glide slope deviation mode.

In the range space of the ideal point mass system, the dominate velocity of the front-side

strategy is defined by the eigenpair

AM==10 , v,=] 0 (6.8)

So the desired eigenvalue of -7.8 is associated with airspeed mode.

For the back-side aircraft dynamics, the point mass plant state space model is

d 0 2213 0 d 0 0 y
v 1=]0 —04802 0.0013 Ay |+1] 04728 0 [ A } (6.9)
14 0 5143 —0.04551 | | AV —83.60 9.927 | b Tmes

Using the front-side (6.5) and back-side (6.6) switching surfaces, gives the same null space
dynamics as (6.7). The dominate velocity mode of the range space dynamics using the back-
side aircraft is a second order system with the real part of the eigenvalues equal to -10 or

the same as that in equation (6.8).

The other two poles of the desired null space dynamics are assumed to be the complex

conjugate poles that the pilot introduces into the inner loop dynamics,
Ay = —0.35+0.3571% (6.10)

This choice can be viewed as an attempt by the pilot to cancel out the aircraft’s pitch

dynamics.

Putting this information together gives the desired null space modes for both the front-side
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and back-side aircraft as

Aa = —1 Az = =78 Az g = —0.35 +£0.3571%
(-1) [0) [+ vg \
0 0 * Uy
Vg1 = Vo = Va3, da = where vy =
0 1 * vy,
* * * g

\ ) \ */ \ */ \ vr

Note the eigenvectors lie in the six dimensional state space of the aircraft state space models.
Since only nm (or 12) degrees of freedom can be specified in the problem, the x’s denote

portions of the dynamics that are not specified.

6.2 Front-Side Aircraft Dynamics

6.2.1 Eigenstructure Strategy

The eigenstructure assignment method outlined in section 2.1.1 was used for constructing
a switching surface to achieve the desired null space dynamics specified in (6.11) with the
front-side aircraft dynamic model given in (4.10), (4.13), and (4.14). This procedure resulted

in a desired switching surface of

0.0024 0.7474 1.1753 —-0.0110 1 ©
Sy = (6.12)
0.0002 —1.0980 —2.1330 0.7811 0 1
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This switching surface creates null space dynamics of

A = —1.0000 Ag = —7.8000 X34 = —0.3500 & 0035713
[ ~0.9999 ) ([ 0.0039 [ 0.5593 £ 0.8289; \
0.0045 —0.0001 —0.0022 F 0.00044
—0.0057 —0.0013 —0.0004 ¥ 0.0019i (6.13)
= V2 = V34 =
—0.0007 0.7866 0.0000 F 0.0003:
0.0057 0.0103 0.0008 =+ 0.00054
\ —0.0065 ) \ —0.6174 ) \ —0.0034 F 0.0043;

which closely approximates the desired dynamic modes in (6.11).

6.2.2 Refined Landing Strategy

The promising results of the switching surface Sy are used to develop a piloting technique for
flying an aircraft represented by the front-side aircraft dynamics. To interpret the strategy
Sar (6.12) consider a transformation into a set of variables more representative of the pilot’s

feed back structure, namely
. . - T
y=|d d 20 6 av V| (6.14)

This transformation is accomplished by the matrix C

1 0 0 0 0 0
Vo
0 A 0 0 0 0
0 0 1 0 0 0
C= (6.15)
0 0 0 0 1 0
0 0 0 1 0 0
0 (%& — gcos fyo) -—%ﬂ (Tlfngl) 0 Z_’%@_
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where y = Cz. The numerical values for the front-side aircraft are

1 0 0 0 0 0 |
0 2213 0 0 0 0
0 0 1 0 0 0
Cy = (6.16)
0 0 0 0 1 0
0 0 0 1 0 0
| 0 —11.55 —20.58 —0.04551 0 9.9267 |
In these variables, the switching function is
Og
= SdeL‘ = Sdfcf‘ly (617)
O-T
where
1 0.0024 0.0034 1.1753 1 —-0.0110 0
SgC;™ = (6.18)
0.0002 0.0003 —-0.0599 0 0.7857 0.1007

This strategy is simplified by constrained output feedback or eliminating those feedbacks
which are less significant than others. [32] By examination, the pilot strategy in (6.18) can

be approximated by

0002 0002 1 1 0 O

SdfC'flw
0 0 0 01 013

} = Sp,C;* (6.19)

The pilot strategy in (6.19) could be interpreted as a front-side piloting strategy. Velocity

control is solely the responsibility of thrust commands with a velocity lead gain of 0.13.
o, = AV 4+0.13V (6.20)

In the structure of (6.19), the velocity lead gain is primarily responsible for placing the null
space velocity mode pole. The pitch command balances the glide slope task (with a deviation

lead gain of 1) and the pitch stabilization (with a deviation lead gain of 1).

09 = 0.002 (Ad + d) + (A0 +6) (6.21)
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The value 0.002 can be thought of as a relative weighting between these two tasks. In
the structure of (6.19), this weight is responsible for placing the second-order, complex
conjugate poles in the null space dynamics. It, combined with the pitch stabilization, could
be considered a cross coupling in the strategy to improve performance given the aircraft’s
dynamic characteristics. This type of higher complexity is what is expected of an experienced
pilot. Whereas the lead terms could be conveyed to a pilot in terms of rules of thumb, the
task weighting would have to be developed by a pilot through experience in the aircraft and

task.

Transforming equation (6.19) back into the state space representation of the linear model

gives
0.0020 0.4426  1.0000 0 1 0

Sp, = (6.22)
0 —1.5015 —2.6753 0.9941 0 1.2905

The null space dynamics generated by Sp, are still close to the desired null space dynamic

modes in (6.11)

A = ~1 Ay = —7.6923 Asq = —0.2536 = 0.3808;
[ —0.9999 ) [ 0.0040 ) [ —0.4312 + 0.9023i \
0.0045 ~0.0001 —0.0011 = 0.0018i
—0.0057 ~0.0000 0.0009 T 0.0018; (6.23)
v = Uy = U3yg =
—0.0000 0.7921 —0.0000 = 0.0000i
0.0057 0.0001 0.0005 == 0.0008;
\ —0.0066 \ —0.6104 \_ 0.0006 F 0.0058; |

The switching surface Sp, in equation (6.22) was simulated with the front-side aircraft dy-
namics represented by (4.10), (4.13), and (4.14). Figure 6.1 illustrates the trajectory data
of this strategy for a wide variety of longitudinal initial conditions representative of vertical
navigation errors bounded by 15 meters. These trajectories possess many desirable char-
acteristics. First, the trajectories illustrate that the aircraft is continually in a safe position

to land. In addition, all glide slope corrections for the short initial conditions are completed
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Figure 6.1: Front-Side Aircraft Refined Landing Strategy

by 100 feet above ground level. Second, the aircraft’s airspeed is well regulated. The speed
loss within 1000 feet of the desired glide slope runway intercept is over the runway and
associated with the flare. Finally, the ground proximity warning system (GPWS) limit of
approximately -1100 feet per minute (nominally —4.7° flight path angle) is not exceeded.

Figure 6.2 illustrates the input/output system response for the short initial condition repre-
sentative of the -15 meter vertical error of the NAV CANADA study. The chattering in the
command time sequences is representative of the simple relay attempting to approximate a

continuous tracking command. The refined strategy is a slightly more coupled response than
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Figure 6.2: Front-Side Aircraft Refined Landing Strategy for Short Initial Condition

the literal front-side or back-side strategies. Initially, it commands nose-up pitch and throttle
slowly up to attain a near level off while maintaining airspeed. Once the glide slope correc-
tion is near complete at approximately -2000 feet, it exhibits a front-side tracking strategy
by using pitch only to maintain the desired glide slope. This is evident by the chattering

pitch command from approximately -2000 feet to flare initiation at approximately -1200 feet.

Figure 6.3 illustrates the input/output system response for the long initial condition repre-
sentative of the +15 meter vertical error of the NAV CANADA study. As in the short initial
condition, slightly more coupling is evident in this strategy than the literal front-side or

back-side strategies. Nose down pitch is commanded while throttle is slowly retarded to in-
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Figure 6.3: Front-Side Aircraft Refined Landing Strategy for Long Initial Condition

crease sink rate but maintain airspeed. As with the previous long initial condition examples,
this example illustrates the performance limitations which govern the aircraft’s response in

accomplishing the task.
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6.3 Back-Side Aircraft Dynamics

6.3.1 Eigenstructure Strategy

The same eigenstructure assignment procedure is used for constructing a switching surface
to achieve the desired null space dynamics (6.11) with the back-side aircraft plant matrix _

(5.3). This procedure resulted in a desired switching surface of

0.0019 0.7923  0.8888 0.2664 1 0
Sy = (6.24)
~0.0012 5.3510 —9.1597 0.8097 0 1

This switching surface creates null space dynamics of

Ay = —1.0000 Ay = —7.8000 X34 = —0.3500 & 003571
[ —0.9975 [ 0.0041 [ 0.6370 + 0.7707i \
0.0045 —0.0001 —0.0023 T 0.0002i
—0.0057 0.0038 —0.0006 T 0.0018i (6.25)
v = Vg = V34 =
—0.0086 0.8872 0.0009 - 0.0005i
0.0057 —0.2637 0.0009 == 0.0004;
\ —0.0702 \ —0.3998 \ 0.0067 T 0.0142i /

that closely approximates the desired null space dynamic modes in (6.11)

6.3.2 Refined Landing Strategy

As in the previous example, the results of the switching surface Sg to achieve the desired
dynamics is used to develop a refined piloting strategy for flying the back-side aircraft rep-
resented by the plant dynamics in (5.3). To better interpret the acquisition strategy Sg in
(6.24), the switching surface is transformed into the same feedback structure (6.14) as in the

front-side example. The transformation matrix C, (where y = Cyz) for the back-side plant
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is

1 0 0 0 0 0
0 221.3 0 0 0 0
0 0 1 0 0 0
Ch = (6.26)
0 O 0 0 1 0
0 0 0 1 0 0
| 0 51.43 —83.60 —0.04551 0 9.927 |
In these variables, the switching function is
1 0.0019 0.0036 0.8888 1 0.2664 0
SaC;t = (6.27)
—0.0012 0.0008 —-0.7386 0 0.8143 0.1007

Again this strategy is simplified by eliminating those feedbacks which are less significant

than others. By examination, the pilot strategy in (6.27) can be approximated by

0002 0002 1 1 0 O
0 0 -101 013

-1 ~

} = Sp,C;! (6.28)

The primary difference between this strategy and the one for the front-side transport aircraft
(6.19) is the addition of a pitch attitude feedback into the thrust command. This term can be
interpreted as a cross-coupling term using pitch attitude to anticipate increases and decreases

in drag. So the thrust switch is modified into
o, = (AV +0.13V) - A6 (6.29)
and the velocity command remains
09 = 0.002 (Ad +d) + (A0 +6) (6.30)

The pitch command balances the glide slope task (with a lead gain of 1) and the pitch
stabilization (with a lead gain of 1). As before, this strategy for pitch could be thought of

as primarily a front side piloting strategy.
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Transforming equation (6.28) back into the state space representation of the linear model
gives
0.0020 0.4426 1 0 1 0

Sp, = (6.31)
0 6.6865 —11.8672 0.9941 0 1.2905

The null space dynamics generated by Sp, are not only a stable tracking strategy, but also

still closely approximate the desired dynamics (6.11)

A= -1 Ao = —7.6924 Asg = —0.2535 = 0.3815
[ —0.9975 \ ([ 0.0040 ) [ 0.3673  0.9300i \ ’
0.0045 —0.0001 0.0012 = 0.00174
—0.0057 —0.0000 —0.0007 £ 0.0019 (6.32)
u = U2 = Us s =
—0.0065 0.7925 ~0.0007 + 0.0020
0.0057 0.0001 —0.0005 F 0.0008
\ —0.0704 ) \ —0.6098 ) \ —0.0124 £ 0.0068i

The switching surface Sp, in equation (6.31) was simulated with the back-side aircraft dy-
namics represented by (4.10), (5.3), and (4.14). Figure 6.4 illustrates the trajectory data of
this strategy for a wide variety of longitudinal initial conditions. As in the front-side aircraft
example (Figure 6.1), this strategy also has many desirable characteristics. The aircraft is
continuously in a safe position to land although the glide slope corrections are slower than
in the front-side aircraft. For the short initial conditions the -1100 feet per minute GPWS
limits are not violated. The most noticeable difference is that it is more difficult to regulate
the aircraft’s airspeed during the short initial condition glide slope corrections due to the
aircraft’s unstable airspeed dynamics. However, the airspeed loss is less than 5 knots and
may be acceptable depending upon the aircraft’s stall speed. Once again the airspeed loss
within 1000 feet of the desired glide slope runway intercept point is associated with the flare

maneuver and not the landing strategy.

Figure 6.5 illustrates the input/output system response for the short initial condition repre-

sentative of the -15 meter vertical error of the NAV CANADA study. The chattering in the
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Figure 6.5: Back-Side Aircraft Refined Landing Strategy for Short Initial Condition

command time sequence is representative of the simple relay attempting to estimate a con-
tinuous tracking command. The input response is similar but perhaps more aggressive than
the front side aircraft example in Figure 6.3. It surprisingly exhibits some front-side charac-
teristics, leaving thrust up to regain the airspeed and using the chattering pitch command

to track the desired glide slope.

Figure 6.6 illustrates the input/output system response for the long initial condition repre-
sentative of the +15 meter vertical error of the NAV CANADA study. This strategy is also
limited by the aircraft’s performance. It basically commands nose down pitch and retard

the throttles until flare initiation.
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Figure 6.6:

Back-Side Aircraft Refined Landing Strategy for Long Initial Condition
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Chapter 7

Conclusions and Recommendations

The primary conclusion to be drawn from this research is that Variable Structure Control
(VSC) techniques are useful in modeling human operators employing a discontinuous or
“relay-like” control strategy. Human operators often employ this type of control strategy
during large amplitude, acquisition tasks. The VSC switching surface formulation allows
for easy mathematical representation of various piloting strategies based on pilot training
literature. As a result, front-side and back-side flying techniques could be simulated for the
visual-landing task. These strategies are sufficient to bound the limited NAV CANADA data

set that is representative of well-trained pilots responding to a vertical navigation error.

In addition, the training literature strategies confirm the conventional wisdom that an air-
craft flying on the front side of the power curve can be successfully landed with either a front
or back-side piloting technique. Whereas, a front-side piloting technique is insufficient for
controlling the unstable speed dynamics of an aircraft flying on the back side of the power

curve.

A cross-coupled acquisition strategy is devised by analyzing the dynamics of an idealized
point-mass aircraft trajectory. The null space or reduced-order system dynamics of this

idealized system are reproduced by the sliding mode control technique of eigenstructure as-

94
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signment. This technique includes parameters representative of the dynamics of the aircraft
being controlled. As a result, an aircraft specific switching surface is developed and inter-
preted in term similar to the pilot training literature. For the front-side aircraft of interest, it
results in a front-side technique with specified glide slope and velocity lead terms as well as a
pitch stabilization task. For the back-side aircraft of interest, the addition of pitch feedback
to the thrust command is recommended to anticipate the changes in drag by changes in pitch

attitude.

Although the flight training literature strategies are sufficient for bounding the response
characteristics of the limited NAV CANADA data set, there is insufficient data to ascertain
whether the pilots implemented a sliding mode or bang-bang acquisition strategy. The
NAV CANADA methodology of using a group of operational flight crews flying a simulator
representative of their aircraft dynamics and cockpit environment is ideal for this study.
However, more data (including pilot inputs, aircraft state variables, and rates of change)
need to be successfully recorded at a sample rate of at least 20 hertz to shed more light on

this distinction.

Further theoretical research could be conducted with the existing variable structure model to
identify other desired dynamic responses the pilot may wish to emulate. These could be based
on using the eigenstructure assignment method with different desired dynamics specified or
using the quadratic minimization technique to devise an optimal control switching surface.
The desired switching surfaces could then be interpreted in terms similar to the pilot training
literature. This method could be employed to identify potential piloting techniques for

specific aircraft and tasks.

Further research could also be conducted in refining the variable strategy model employed
in this study. The importance of imprecise human observations and the human reaction
time delay in the outer acquisition loop and their effects on stability needs be studied. This
objective could be achieved by implementation of observation noise, indifference thresholds,

a Padé time delays, and a Kalman filter as a predictor/estimator similar to the Modified
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Optimal Control Model.

Additional details could also be added to the inner (pilot augmented) loop of the model.
Instead of assuming a set of closed loop dynamics based on experimental observations, an
inner loop control of the basic aircraft dynamics could be implemented. One method might
be to employ a dynamic inversion methodology to determine when it is reasonable or not
reasonable to assume the pilot can achieve the desired dynamics. Another method could be
based on existing linear operator tracking models (such as the MOCM) to attempt to repli-
cate the pilot’s ability to achieve the desired inner loop dynamics. The MOCM methodology
may tie in to the asymptotic properties of the Linear Quadratic Regulator (LQR) and the

sliding mode controller.
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Appendix A

Reduced-Order System Eigenvalues

and Transmission Zeros

A.1 Proposition

If the state space representation of the dynamic system is a minimal representation the
transmission zeros are not elements of the spectrum of the plant matrix A. In addition, if
(SB)~! exists, z; is a transmission zero of the open-loop system represented by the matrix
triple (S, A, B) iff it is an eigenvalue () of the reduced-order system dynamics (representing

the dynamic modes of the constrained system to Sz = 0).!

!Edwards and Spurgeon [23] present an alternative form for this proof using the Rosenbrock [26] system
matrix. El-Ghezawi et al [28] proposed using this relationship as a meanings of calculating the transmission

zeros of any linear, time-invariant system.
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A.2 Given

A minimal (least order) representation [26] of the linear time invariant dynamic system

r = Az +DB
T T+ bu (A1)

c = Sz

where A € R**" B € R**™ S € R™" z € R", u € R™ and o € R™. A minimal system
representation such as this is fully controllable and fully observable. [26] The transmission

zeros [27] (z; € C') are given by the roots of
det [S (21, — A) ™ B] = 0 (A.2)

Since the state space system defined by equation (A.1) is square (dim(o) = dim(u) = m) and
the Rank(SB) = m, there will be n — m transmission zeros [27, 73] of the open-loop system
represented by the system in equation (A.1). Since the state space system defined by equation
(A.1) is a minimal representation, none of the transmission zeros (z; € C',j =1,---,n—m)

are elements of the spectrum of A [26]; so (z;I, — A)™" exists.

Now consider the output of this system as constrained to zero.

0= Sz (A.3)

So z € ker(S). The eigenvalues ()\; € Ct,i = 1,---,n) of the constrained system are given
by the roots of

det [\il, — (I, — B(SB)™'S) A] =0 (A.4)

where n — m of these roots represent the constrained dynamic modes of the system and m

of these roots are zero as a result of enforcing the constraint. [23]

\ A=A 1=12---n—-m=j
' A=0 ti=n—m+1,---,n
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A.3 Proof

A.3.1 Conjecture: z; = );

Transmission zeros (z;) of the open-loop system are the eigenvalues of the reduced-order

system () .

Proof

Reposing the definition of the open-loop transmission zeros defined in equation (A.2) as a
vector equation gives

S(zI,— A ' Bw=0 (A.6)
where S € ™", A€ R™* B e RV™w € R™, w # {0}, 2, €C* #0,andj =1,---,n—m.
Since the system in equation (A.1) is a minimal representation, z; is not an eigenvalue of A

[26], and (2,1, — A)™" exists. Equation (A.6) can be interpreted as
(2;I, — A)™' Bw € ker(S) (A7)
Since z € ker(S), let
z = (zI, — A)™' Bw (A.8)
Using equation (A.8) to find w in terms of =
(2iI, — A)x = DBuw
zjt — Az = Buw

2jSx — SAzx = SBw
0—SAz = SBw

gives

w=—(SB)"' SAx (A.9)
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Substituting equation (A.9) into equation (A.8) gives

T = ~ (5L~ A)"'B(SB)" Sy
(5L, ~ A)z = ~B(SB)™' SAg
[zjzn—(zn—B(SB)‘ls) Az = o

So z; is an eigenvalue of the reduced-order System and x is its associated eigenvector (v)).

Also note v; € ker(S). Since z # {0}

det [21, - (I. - B(sB)™ S)A] =0 (A.10)

Meaning the transmission zeros (2;) of the open-loop system defined by the matrix triple
(8,4, B) and equation (A.2) are the eigenvalues of the reduced-order system defined by
equation (A.4).

{5} = {3} (A.11)

A.3.2 Conjecture: Aj = 2

Eigenvalues of the reduced-order system (%) are the transmission zeros (z;) of the open-loop

system

Proof

Reposing the definition of the eigenvalues given in equation (A4) as an eigenvector problem
gives

(I - B(SB)™'S) Av = \w (A.12)

where S € Rmxn 4 ¢ R>n B e R™*™, the eigenvector v ¢ R", v # {0}, and

A €C £ L =1,---,n—
/\:{ or i n—m (A.13)

A=0 fori:n—m+1,---,n

e
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Rearranging gives equation (A.12) gives,

Av— B(SB)™1SAv = \pv
—B(SB)"'SAv = (MI,— A)v
If the eigenvalues of the reduced-order system ); are not eigenvalues of the original system

matrix A, then (M, — A)™" exists, and

— (NI, — AT B(SB)'SAv = v (A.14)
Define w € R™ as
w= —(SB)"'SAv (A.15)
So equation (A.14) becomes
iy — A 'Bw=v (A.16)

Note since v # {0}, w # {0}. Multiplying equation (A.16) by S gives

—S (\iI, — A) "' Bw = Sv (A.17)

From equation (A.12) it can be shown that for A; # 0 = A;,

S (I, — B(SB)™'S)Av = \;Sv
(S—SB(SB)™'S)Av = \;Sv
(S—=S)Av = X\;Sv
0 = Sv
So ,
v € ker(S) (A.18)

Equation (A.17) becomes
S(\I,— A 'Bw=0

and since w # 0

det [S (I, — A) " B] =0 (A.19)
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where ); # 0 and }; is not an eigenvalue of A that are the conditions on the definition
of the transmission zeros. So the eigenvalues of the reduced-order system (J;) defined by
equations (A.4) and (A.5) are the transmission zeros (2;) of the open loop system defined

by the matrix triple (S, A, B) and equation (A.2).

)= {z) (A.20)

A.3.3 Conclusion

If the state space representation of the dynamic system is a minimal representation and if
(SB)~! exists, z; is a transmission zero of the open-loop system represented by the matrix
triple (S, A, B) iff it is an eigenvalue ();) of the reduced-order system dynamics (representing

the dynamic modes of the constrained system to Sz = 0).

{A} = {z} (A.21)
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